166 lines
5.0 KiB
Python
166 lines
5.0 KiB
Python
"""
|
|
Template script for training RL agents with Stable Baselines3.
|
|
|
|
This template demonstrates best practices for:
|
|
- Setting up training with proper monitoring
|
|
- Using callbacks for evaluation and checkpointing
|
|
- Vectorized environments for efficiency
|
|
- TensorBoard integration
|
|
- Model saving and loading
|
|
"""
|
|
|
|
import gymnasium as gym
|
|
from stable_baselines3 import PPO
|
|
from stable_baselines3.common.env_util import make_vec_env
|
|
from stable_baselines3.common.callbacks import (
|
|
EvalCallback,
|
|
CheckpointCallback,
|
|
CallbackList,
|
|
)
|
|
from stable_baselines3.common.vec_env import SubprocVecEnv, VecNormalize
|
|
import os
|
|
|
|
|
|
def train_agent(
|
|
env_id="CartPole-v1",
|
|
algorithm=PPO,
|
|
policy="MlpPolicy",
|
|
n_envs=4,
|
|
total_timesteps=100000,
|
|
eval_freq=10000,
|
|
save_freq=10000,
|
|
log_dir="./logs/",
|
|
save_path="./models/",
|
|
):
|
|
"""
|
|
Train an RL agent with best practices.
|
|
|
|
Args:
|
|
env_id: Gymnasium environment ID
|
|
algorithm: SB3 algorithm class (PPO, SAC, DQN, etc.)
|
|
policy: Policy type ("MlpPolicy", "CnnPolicy", "MultiInputPolicy")
|
|
n_envs: Number of parallel environments
|
|
total_timesteps: Total training timesteps
|
|
eval_freq: Frequency of evaluation (in timesteps)
|
|
save_freq: Frequency of model checkpoints (in timesteps)
|
|
log_dir: Directory for logs and TensorBoard
|
|
save_path: Directory for model checkpoints
|
|
"""
|
|
# Create directories
|
|
os.makedirs(log_dir, exist_ok=True)
|
|
os.makedirs(save_path, exist_ok=True)
|
|
eval_log_dir = os.path.join(log_dir, "eval")
|
|
os.makedirs(eval_log_dir, exist_ok=True)
|
|
|
|
# Create training environment (vectorized for efficiency)
|
|
print(f"Creating {n_envs} parallel training environments...")
|
|
env = make_vec_env(
|
|
env_id,
|
|
n_envs=n_envs,
|
|
vec_env_cls=SubprocVecEnv, # Use SubprocVecEnv for parallel execution
|
|
# vec_env_cls=DummyVecEnv, # Use DummyVecEnv for lightweight environments
|
|
)
|
|
|
|
# Optional: Add normalization wrapper for better performance
|
|
# Uncomment for continuous control tasks
|
|
# env = VecNormalize(env, norm_obs=True, norm_reward=True, clip_obs=10.0)
|
|
|
|
# Create separate evaluation environment
|
|
print("Creating evaluation environment...")
|
|
eval_env = make_vec_env(env_id, n_envs=1)
|
|
# If using VecNormalize, wrap eval env but set training=False
|
|
# eval_env = VecNormalize(eval_env, training=False, norm_reward=False)
|
|
|
|
# Set up callbacks
|
|
eval_callback = EvalCallback(
|
|
eval_env,
|
|
best_model_save_path=os.path.join(save_path, "best_model"),
|
|
log_path=eval_log_dir,
|
|
eval_freq=eval_freq // n_envs, # Adjust for number of environments
|
|
n_eval_episodes=10,
|
|
deterministic=True,
|
|
render=False,
|
|
)
|
|
|
|
checkpoint_callback = CheckpointCallback(
|
|
save_freq=save_freq // n_envs, # Adjust for number of environments
|
|
save_path=save_path,
|
|
name_prefix="rl_model",
|
|
save_replay_buffer=False, # Set True for off-policy algorithms if needed
|
|
)
|
|
|
|
callback = CallbackList([eval_callback, checkpoint_callback])
|
|
|
|
# Initialize the agent
|
|
print(f"Initializing {algorithm.__name__} agent...")
|
|
model = algorithm(
|
|
policy,
|
|
env,
|
|
verbose=1,
|
|
tensorboard_log=log_dir,
|
|
# Algorithm-specific hyperparameters can be added here
|
|
# learning_rate=3e-4,
|
|
# n_steps=2048, # For PPO/A2C
|
|
# batch_size=64,
|
|
# gamma=0.99,
|
|
)
|
|
|
|
# Train the agent
|
|
print(f"Training for {total_timesteps} timesteps...")
|
|
model.learn(
|
|
total_timesteps=total_timesteps,
|
|
callback=callback,
|
|
tb_log_name=f"{algorithm.__name__}_{env_id}",
|
|
)
|
|
|
|
# Save final model
|
|
final_model_path = os.path.join(save_path, "final_model")
|
|
print(f"Saving final model to {final_model_path}...")
|
|
model.save(final_model_path)
|
|
|
|
# Save VecNormalize statistics if used
|
|
# env.save(os.path.join(save_path, "vec_normalize.pkl"))
|
|
|
|
print("Training complete!")
|
|
print(f"Best model saved at: {os.path.join(save_path, 'best_model')}")
|
|
print(f"Final model saved at: {final_model_path}")
|
|
print(f"TensorBoard logs: {log_dir}")
|
|
print(f"Run 'tensorboard --logdir {log_dir}' to view training progress")
|
|
|
|
# Cleanup
|
|
env.close()
|
|
eval_env.close()
|
|
|
|
return model
|
|
|
|
|
|
if __name__ == "__main__":
|
|
# Example: Train PPO on CartPole
|
|
train_agent(
|
|
env_id="CartPole-v1",
|
|
algorithm=PPO,
|
|
policy="MlpPolicy",
|
|
n_envs=4,
|
|
total_timesteps=100000,
|
|
)
|
|
|
|
# Example: Train SAC on continuous control task
|
|
# from stable_baselines3 import SAC
|
|
# train_agent(
|
|
# env_id="Pendulum-v1",
|
|
# algorithm=SAC,
|
|
# policy="MlpPolicy",
|
|
# n_envs=4,
|
|
# total_timesteps=50000,
|
|
# )
|
|
|
|
# Example: Train DQN on discrete task
|
|
# from stable_baselines3 import DQN
|
|
# train_agent(
|
|
# env_id="LunarLander-v2",
|
|
# algorithm=DQN,
|
|
# policy="MlpPolicy",
|
|
# n_envs=1, # DQN typically uses single env
|
|
# total_timesteps=100000,
|
|
# )
|