Files
gh-k-dense-ai-claude-scient…/skills/stable-baselines3/scripts/train_rl_agent.py
2025-11-30 08:30:10 +08:00

166 lines
5.0 KiB
Python

"""
Template script for training RL agents with Stable Baselines3.
This template demonstrates best practices for:
- Setting up training with proper monitoring
- Using callbacks for evaluation and checkpointing
- Vectorized environments for efficiency
- TensorBoard integration
- Model saving and loading
"""
import gymnasium as gym
from stable_baselines3 import PPO
from stable_baselines3.common.env_util import make_vec_env
from stable_baselines3.common.callbacks import (
EvalCallback,
CheckpointCallback,
CallbackList,
)
from stable_baselines3.common.vec_env import SubprocVecEnv, VecNormalize
import os
def train_agent(
env_id="CartPole-v1",
algorithm=PPO,
policy="MlpPolicy",
n_envs=4,
total_timesteps=100000,
eval_freq=10000,
save_freq=10000,
log_dir="./logs/",
save_path="./models/",
):
"""
Train an RL agent with best practices.
Args:
env_id: Gymnasium environment ID
algorithm: SB3 algorithm class (PPO, SAC, DQN, etc.)
policy: Policy type ("MlpPolicy", "CnnPolicy", "MultiInputPolicy")
n_envs: Number of parallel environments
total_timesteps: Total training timesteps
eval_freq: Frequency of evaluation (in timesteps)
save_freq: Frequency of model checkpoints (in timesteps)
log_dir: Directory for logs and TensorBoard
save_path: Directory for model checkpoints
"""
# Create directories
os.makedirs(log_dir, exist_ok=True)
os.makedirs(save_path, exist_ok=True)
eval_log_dir = os.path.join(log_dir, "eval")
os.makedirs(eval_log_dir, exist_ok=True)
# Create training environment (vectorized for efficiency)
print(f"Creating {n_envs} parallel training environments...")
env = make_vec_env(
env_id,
n_envs=n_envs,
vec_env_cls=SubprocVecEnv, # Use SubprocVecEnv for parallel execution
# vec_env_cls=DummyVecEnv, # Use DummyVecEnv for lightweight environments
)
# Optional: Add normalization wrapper for better performance
# Uncomment for continuous control tasks
# env = VecNormalize(env, norm_obs=True, norm_reward=True, clip_obs=10.0)
# Create separate evaluation environment
print("Creating evaluation environment...")
eval_env = make_vec_env(env_id, n_envs=1)
# If using VecNormalize, wrap eval env but set training=False
# eval_env = VecNormalize(eval_env, training=False, norm_reward=False)
# Set up callbacks
eval_callback = EvalCallback(
eval_env,
best_model_save_path=os.path.join(save_path, "best_model"),
log_path=eval_log_dir,
eval_freq=eval_freq // n_envs, # Adjust for number of environments
n_eval_episodes=10,
deterministic=True,
render=False,
)
checkpoint_callback = CheckpointCallback(
save_freq=save_freq // n_envs, # Adjust for number of environments
save_path=save_path,
name_prefix="rl_model",
save_replay_buffer=False, # Set True for off-policy algorithms if needed
)
callback = CallbackList([eval_callback, checkpoint_callback])
# Initialize the agent
print(f"Initializing {algorithm.__name__} agent...")
model = algorithm(
policy,
env,
verbose=1,
tensorboard_log=log_dir,
# Algorithm-specific hyperparameters can be added here
# learning_rate=3e-4,
# n_steps=2048, # For PPO/A2C
# batch_size=64,
# gamma=0.99,
)
# Train the agent
print(f"Training for {total_timesteps} timesteps...")
model.learn(
total_timesteps=total_timesteps,
callback=callback,
tb_log_name=f"{algorithm.__name__}_{env_id}",
)
# Save final model
final_model_path = os.path.join(save_path, "final_model")
print(f"Saving final model to {final_model_path}...")
model.save(final_model_path)
# Save VecNormalize statistics if used
# env.save(os.path.join(save_path, "vec_normalize.pkl"))
print("Training complete!")
print(f"Best model saved at: {os.path.join(save_path, 'best_model')}")
print(f"Final model saved at: {final_model_path}")
print(f"TensorBoard logs: {log_dir}")
print(f"Run 'tensorboard --logdir {log_dir}' to view training progress")
# Cleanup
env.close()
eval_env.close()
return model
if __name__ == "__main__":
# Example: Train PPO on CartPole
train_agent(
env_id="CartPole-v1",
algorithm=PPO,
policy="MlpPolicy",
n_envs=4,
total_timesteps=100000,
)
# Example: Train SAC on continuous control task
# from stable_baselines3 import SAC
# train_agent(
# env_id="Pendulum-v1",
# algorithm=SAC,
# policy="MlpPolicy",
# n_envs=4,
# total_timesteps=50000,
# )
# Example: Train DQN on discrete task
# from stable_baselines3 import DQN
# train_agent(
# env_id="LunarLander-v2",
# algorithm=DQN,
# policy="MlpPolicy",
# n_envs=1, # DQN typically uses single env
# total_timesteps=100000,
# )