Files
gh-k-dense-ai-claude-scient…/skills/scikit-learn/references/supervised_learning.md
2025-11-30 08:30:10 +08:00

11 KiB

Supervised Learning Reference

Overview

Supervised learning algorithms learn from labeled training data to make predictions on new data. Scikit-learn provides comprehensive implementations for both classification and regression tasks.

Linear Models

Regression

Linear Regression (sklearn.linear_model.LinearRegression)

  • Ordinary least squares regression
  • Fast, interpretable, no hyperparameters
  • Use when: Linear relationships, interpretability matters
  • Example:
from sklearn.linear_model import LinearRegression

model = LinearRegression()
model.fit(X_train, y_train)
predictions = model.predict(X_test)

Ridge Regression (sklearn.linear_model.Ridge)

  • L2 regularization to prevent overfitting
  • Key parameter: alpha (regularization strength, default=1.0)
  • Use when: Multicollinearity present, need regularization
  • Example:
from sklearn.linear_model import Ridge

model = Ridge(alpha=1.0)
model.fit(X_train, y_train)

Lasso (sklearn.linear_model.Lasso)

  • L1 regularization with feature selection
  • Key parameter: alpha (regularization strength)
  • Use when: Want sparse models, feature selection
  • Can reduce some coefficients to exactly zero
  • Example:
from sklearn.linear_model import Lasso

model = Lasso(alpha=0.1)
model.fit(X_train, y_train)
# Check which features were selected
print(f"Non-zero coefficients: {sum(model.coef_ != 0)}")

ElasticNet (sklearn.linear_model.ElasticNet)

  • Combines L1 and L2 regularization
  • Key parameters: alpha, l1_ratio (0=Ridge, 1=Lasso)
  • Use when: Need both feature selection and regularization
  • Example:
from sklearn.linear_model import ElasticNet

model = ElasticNet(alpha=0.1, l1_ratio=0.5)
model.fit(X_train, y_train)

Classification

Logistic Regression (sklearn.linear_model.LogisticRegression)

  • Binary and multiclass classification
  • Key parameters: C (inverse regularization), penalty ('l1', 'l2', 'elasticnet')
  • Returns probability estimates
  • Use when: Need probabilistic predictions, interpretability
  • Example:
from sklearn.linear_model import LogisticRegression

model = LogisticRegression(C=1.0, max_iter=1000)
model.fit(X_train, y_train)
probas = model.predict_proba(X_test)

Stochastic Gradient Descent (SGD)

  • SGDClassifier, SGDRegressor
  • Efficient for large-scale learning
  • Key parameters: loss, penalty, alpha, learning_rate
  • Use when: Very large datasets (>10^4 samples)
  • Example:
from sklearn.linear_model import SGDClassifier

model = SGDClassifier(loss='log_loss', max_iter=1000, tol=1e-3)
model.fit(X_train, y_train)

Support Vector Machines

SVC (sklearn.svm.SVC)

  • Classification with kernel methods
  • Key parameters: C, kernel ('linear', 'rbf', 'poly'), gamma
  • Use when: Small to medium datasets, complex decision boundaries
  • Note: Does not scale well to large datasets
  • Example:
from sklearn.svm import SVC

# Linear kernel for linearly separable data
model_linear = SVC(kernel='linear', C=1.0)

# RBF kernel for non-linear data
model_rbf = SVC(kernel='rbf', C=1.0, gamma='scale')
model_rbf.fit(X_train, y_train)

SVR (sklearn.svm.SVR)

  • Regression with kernel methods
  • Similar parameters to SVC
  • Additional parameter: epsilon (tube width)
  • Example:
from sklearn.svm import SVR

model = SVR(kernel='rbf', C=1.0, epsilon=0.1)
model.fit(X_train, y_train)

Decision Trees

DecisionTreeClassifier / DecisionTreeRegressor

  • Non-parametric model learning decision rules
  • Key parameters:
    • max_depth: Maximum tree depth (prevents overfitting)
    • min_samples_split: Minimum samples to split a node
    • min_samples_leaf: Minimum samples in leaf
    • criterion: 'gini', 'entropy' for classification; 'squared_error', 'absolute_error' for regression
  • Use when: Need interpretable model, non-linear relationships, mixed feature types
  • Prone to overfitting - use ensembles or pruning
  • Example:
from sklearn.tree import DecisionTreeClassifier

model = DecisionTreeClassifier(
    max_depth=5,
    min_samples_split=20,
    min_samples_leaf=10,
    criterion='gini'
)
model.fit(X_train, y_train)

# Visualize the tree
from sklearn.tree import plot_tree
plot_tree(model, feature_names=feature_names, class_names=class_names)

Ensemble Methods

Random Forests

RandomForestClassifier / RandomForestRegressor

  • Ensemble of decision trees with bagging
  • Key parameters:
    • n_estimators: Number of trees (default=100)
    • max_depth: Maximum tree depth
    • max_features: Features to consider for splits ('sqrt', 'log2', or int)
    • min_samples_split, min_samples_leaf: Control tree growth
  • Use when: High accuracy needed, can afford computation
  • Provides feature importance
  • Example:
from sklearn.ensemble import RandomForestClassifier

model = RandomForestClassifier(
    n_estimators=100,
    max_depth=10,
    max_features='sqrt',
    n_jobs=-1  # Use all CPU cores
)
model.fit(X_train, y_train)

# Feature importance
importances = model.feature_importances_

Gradient Boosting

GradientBoostingClassifier / GradientBoostingRegressor

  • Sequential ensemble building trees on residuals
  • Key parameters:
    • n_estimators: Number of boosting stages
    • learning_rate: Shrinks contribution of each tree
    • max_depth: Depth of individual trees (typically 3-5)
    • subsample: Fraction of samples for training each tree
  • Use when: Need high accuracy, can afford training time
  • Often achieves best performance
  • Example:
from sklearn.ensemble import GradientBoostingClassifier

model = GradientBoostingClassifier(
    n_estimators=100,
    learning_rate=0.1,
    max_depth=3,
    subsample=0.8
)
model.fit(X_train, y_train)

HistGradientBoostingClassifier / HistGradientBoostingRegressor

  • Faster gradient boosting with histogram-based algorithm
  • Native support for missing values and categorical features
  • Key parameters: Similar to GradientBoosting
  • Use when: Large datasets, need faster training
  • Example:
from sklearn.ensemble import HistGradientBoostingClassifier

model = HistGradientBoostingClassifier(
    max_iter=100,
    learning_rate=0.1,
    max_depth=None,  # No limit by default
    categorical_features='from_dtype'  # Auto-detect categorical
)
model.fit(X_train, y_train)

Other Ensemble Methods

AdaBoost

  • Adaptive boosting focusing on misclassified samples
  • Key parameters: n_estimators, learning_rate, estimator (base estimator)
  • Use when: Simple boosting approach needed
  • Example:
from sklearn.ensemble import AdaBoostClassifier

model = AdaBoostClassifier(n_estimators=50, learning_rate=1.0)
model.fit(X_train, y_train)

Voting Classifier / Regressor

  • Combines predictions from multiple models
  • Types: 'hard' (majority vote) or 'soft' (average probabilities)
  • Use when: Want to ensemble different model types
  • Example:
from sklearn.ensemble import VotingClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.svm import SVC

model = VotingClassifier(
    estimators=[
        ('lr', LogisticRegression()),
        ('dt', DecisionTreeClassifier()),
        ('svc', SVC(probability=True))
    ],
    voting='soft'
)
model.fit(X_train, y_train)

Stacking Classifier / Regressor

  • Trains a meta-model on predictions from base models
  • More sophisticated than voting
  • Key parameter: final_estimator (meta-learner)
  • Example:
from sklearn.ensemble import StackingClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.svm import SVC

model = StackingClassifier(
    estimators=[
        ('dt', DecisionTreeClassifier()),
        ('svc', SVC())
    ],
    final_estimator=LogisticRegression()
)
model.fit(X_train, y_train)

K-Nearest Neighbors

KNeighborsClassifier / KNeighborsRegressor

  • Non-parametric method based on distance
  • Key parameters:
    • n_neighbors: Number of neighbors (default=5)
    • weights: 'uniform' or 'distance'
    • metric: Distance metric ('euclidean', 'manhattan', etc.)
  • Use when: Small dataset, simple baseline needed
  • Slow prediction on large datasets
  • Example:
from sklearn.neighbors import KNeighborsClassifier

model = KNeighborsClassifier(n_neighbors=5, weights='distance')
model.fit(X_train, y_train)

Naive Bayes

GaussianNB, MultinomialNB, BernoulliNB

  • Probabilistic classifiers based on Bayes' theorem
  • Fast training and prediction
  • GaussianNB: Continuous features (assumes Gaussian distribution)
  • MultinomialNB: Count features (text classification)
  • BernoulliNB: Binary features
  • Use when: Text classification, fast baseline, probabilistic predictions
  • Example:
from sklearn.naive_bayes import GaussianNB, MultinomialNB

# For continuous features
model_gaussian = GaussianNB()

# For text/count data
model_multinomial = MultinomialNB(alpha=1.0)  # alpha is smoothing parameter
model_multinomial.fit(X_train, y_train)

Neural Networks

MLPClassifier / MLPRegressor

  • Multi-layer perceptron (feedforward neural network)
  • Key parameters:
    • hidden_layer_sizes: Tuple of hidden layer sizes, e.g., (100, 50)
    • activation: 'relu', 'tanh', 'logistic'
    • solver: 'adam', 'sgd', 'lbfgs'
    • alpha: L2 regularization parameter
    • learning_rate: 'constant', 'adaptive'
  • Use when: Complex non-linear patterns, large datasets
  • Requires feature scaling
  • Example:
from sklearn.neural_network import MLPClassifier
from sklearn.preprocessing import StandardScaler

# Scale features first
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)

model = MLPClassifier(
    hidden_layer_sizes=(100, 50),
    activation='relu',
    solver='adam',
    alpha=0.0001,
    max_iter=1000
)
model.fit(X_train_scaled, y_train)

Algorithm Selection Guide

Choose based on:

Dataset size:

  • Small (<1k samples): KNN, SVM, Decision Trees
  • Medium (1k-100k): Random Forest, Gradient Boosting, Linear Models
  • Large (>100k): SGD, Linear Models, HistGradientBoosting

Interpretability:

  • High: Linear Models, Decision Trees
  • Medium: Random Forest (feature importance)
  • Low: SVM with RBF kernel, Neural Networks

Accuracy vs Speed:

  • Fast training: Naive Bayes, Linear Models, KNN
  • High accuracy: Gradient Boosting, Random Forest, Stacking
  • Fast prediction: Linear Models, Naive Bayes
  • Slow prediction: KNN (on large datasets), SVM

Feature types:

  • Continuous: Most algorithms work well
  • Categorical: Trees, HistGradientBoosting (native support)
  • Mixed: Trees, Gradient Boosting
  • Text: Naive Bayes, Linear Models with TF-IDF

Common starting points:

  1. Logistic Regression (classification) / Linear Regression (regression) - fast baseline
  2. Random Forest - good default choice
  3. Gradient Boosting - optimize for best accuracy