Files
gh-k-dense-ai-claude-scient…/skills/scikit-learn/references/preprocessing.md
2025-11-30 08:30:10 +08:00

15 KiB

Data Preprocessing and Feature Engineering Reference

Overview

Data preprocessing transforms raw data into a format suitable for machine learning models. This includes scaling, encoding, handling missing values, and feature engineering.

Feature Scaling and Normalization

StandardScaler

StandardScaler (sklearn.preprocessing.StandardScaler)

  • Standardizes features to zero mean and unit variance
  • Formula: z = (x - mean) / std
  • Use when: Features have different scales, algorithm assumes normally distributed data
  • Required for: SVM, KNN, Neural Networks, PCA, Linear Regression with regularization
  • Example:
from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)  # Use same parameters as training

# Access learned parameters
print(f"Mean: {scaler.mean_}")
print(f"Std: {scaler.scale_}")

MinMaxScaler

MinMaxScaler (sklearn.preprocessing.MinMaxScaler)

  • Scales features to a given range (default [0, 1])
  • Formula: X_scaled = (X - X.min) / (X.max - X.min)
  • Use when: Need bounded values, data not normally distributed
  • Sensitive to outliers
  • Example:
from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler(feature_range=(0, 1))
X_scaled = scaler.fit_transform(X_train)

# Custom range
scaler = MinMaxScaler(feature_range=(-1, 1))
X_scaled = scaler.fit_transform(X_train)

RobustScaler

RobustScaler (sklearn.preprocessing.RobustScaler)

  • Scales using median and interquartile range (IQR)
  • Formula: X_scaled = (X - median) / IQR
  • Use when: Data contains outliers
  • Robust to outliers
  • Example:
from sklearn.preprocessing import RobustScaler

scaler = RobustScaler()
X_scaled = scaler.fit_transform(X_train)

Normalizer

Normalizer (sklearn.preprocessing.Normalizer)

  • Normalizes samples individually to unit norm
  • Common norms: 'l1', 'l2', 'max'
  • Use when: Need to normalize each sample independently (e.g., text features)
  • Example:
from sklearn.preprocessing import Normalizer

normalizer = Normalizer(norm='l2')  # Euclidean norm
X_normalized = normalizer.fit_transform(X)

MaxAbsScaler

MaxAbsScaler (sklearn.preprocessing.MaxAbsScaler)

  • Scales by maximum absolute value
  • Range: [-1, 1]
  • Doesn't shift/center data (preserves sparsity)
  • Use when: Data is already centered or sparse
  • Example:
from sklearn.preprocessing import MaxAbsScaler

scaler = MaxAbsScaler()
X_scaled = scaler.fit_transform(X_sparse)

Encoding Categorical Variables

OneHotEncoder

OneHotEncoder (sklearn.preprocessing.OneHotEncoder)

  • Creates binary columns for each category
  • Use when: Nominal categories (no order), tree-based models or linear models
  • Example:
from sklearn.preprocessing import OneHotEncoder

encoder = OneHotEncoder(sparse_output=False, handle_unknown='ignore')
X_encoded = encoder.fit_transform(X_categorical)

# Get feature names
feature_names = encoder.get_feature_names_out(['color', 'size'])

# Handle unknown categories during transform
X_test_encoded = encoder.transform(X_test_categorical)

OrdinalEncoder

OrdinalEncoder (sklearn.preprocessing.OrdinalEncoder)

  • Encodes categories as integers
  • Use when: Ordinal categories (ordered), or tree-based models
  • Example:
from sklearn.preprocessing import OrdinalEncoder

# Natural ordering
encoder = OrdinalEncoder()
X_encoded = encoder.fit_transform(X_categorical)

# Custom ordering
encoder = OrdinalEncoder(categories=[['small', 'medium', 'large']])
X_encoded = encoder.fit_transform(X_categorical)

LabelEncoder

LabelEncoder (sklearn.preprocessing.LabelEncoder)

  • Encodes target labels (y) as integers
  • Use for: Target variable encoding
  • Example:
from sklearn.preprocessing import LabelEncoder

le = LabelEncoder()
y_encoded = le.fit_transform(y)

# Decode back
y_decoded = le.inverse_transform(y_encoded)
print(f"Classes: {le.classes_}")

Target Encoding (using category_encoders)

# Install: uv pip install category-encoders
from category_encoders import TargetEncoder

encoder = TargetEncoder()
X_train_encoded = encoder.fit_transform(X_train_categorical, y_train)
X_test_encoded = encoder.transform(X_test_categorical)

Non-linear Transformations

Power Transforms

PowerTransformer

  • Makes data more Gaussian-like
  • Methods: 'yeo-johnson' (works with negative values), 'box-cox' (positive only)
  • Use when: Data is skewed, algorithm assumes normality
  • Example:
from sklearn.preprocessing import PowerTransformer

# Yeo-Johnson (handles negative values)
pt = PowerTransformer(method='yeo-johnson', standardize=True)
X_transformed = pt.fit_transform(X)

# Box-Cox (positive values only)
pt = PowerTransformer(method='box-cox', standardize=True)
X_transformed = pt.fit_transform(X)

Quantile Transformation

QuantileTransformer

  • Transforms features to follow uniform or normal distribution
  • Robust to outliers
  • Use when: Want to reduce outlier impact
  • Example:
from sklearn.preprocessing import QuantileTransformer

# Transform to uniform distribution
qt = QuantileTransformer(output_distribution='uniform', random_state=42)
X_transformed = qt.fit_transform(X)

# Transform to normal distribution
qt = QuantileTransformer(output_distribution='normal', random_state=42)
X_transformed = qt.fit_transform(X)

Log Transform

import numpy as np

# Log1p (log(1 + x)) - handles zeros
X_log = np.log1p(X)

# Or use FunctionTransformer
from sklearn.preprocessing import FunctionTransformer

log_transformer = FunctionTransformer(np.log1p, inverse_func=np.expm1)
X_log = log_transformer.fit_transform(X)

Missing Value Imputation

SimpleImputer

SimpleImputer (sklearn.impute.SimpleImputer)

  • Basic imputation strategies
  • Strategies: 'mean', 'median', 'most_frequent', 'constant'
  • Example:
from sklearn.impute import SimpleImputer

# For numerical features
imputer = SimpleImputer(strategy='mean')
X_imputed = imputer.fit_transform(X)

# For categorical features
imputer = SimpleImputer(strategy='most_frequent')
X_imputed = imputer.fit_transform(X_categorical)

# Fill with constant
imputer = SimpleImputer(strategy='constant', fill_value=0)
X_imputed = imputer.fit_transform(X)

Iterative Imputer

IterativeImputer

  • Models each feature with missing values as function of other features
  • More sophisticated than SimpleImputer
  • Example:
from sklearn.experimental import enable_iterative_imputer
from sklearn.impute import IterativeImputer

imputer = IterativeImputer(max_iter=10, random_state=42)
X_imputed = imputer.fit_transform(X)

KNN Imputer

KNNImputer

  • Imputes using k-nearest neighbors
  • Use when: Features are correlated
  • Example:
from sklearn.impute import KNNImputer

imputer = KNNImputer(n_neighbors=5)
X_imputed = imputer.fit_transform(X)

Feature Engineering

Polynomial Features

PolynomialFeatures

  • Creates polynomial and interaction features
  • Use when: Need non-linear features for linear models
  • Example:
from sklearn.preprocessing import PolynomialFeatures

# Degree 2: includes x1, x2, x1^2, x2^2, x1*x2
poly = PolynomialFeatures(degree=2, include_bias=False)
X_poly = poly.fit_transform(X)

# Get feature names
feature_names = poly.get_feature_names_out(['x1', 'x2'])

# Only interactions (no powers)
poly = PolynomialFeatures(degree=2, interaction_only=True, include_bias=False)
X_interactions = poly.fit_transform(X)

Binning/Discretization

KBinsDiscretizer

  • Bins continuous features into discrete intervals
  • Strategies: 'uniform', 'quantile', 'kmeans'
  • Encoding: 'onehot', 'ordinal', 'onehot-dense'
  • Example:
from sklearn.preprocessing import KBinsDiscretizer

# Equal-width bins
binner = KBinsDiscretizer(n_bins=5, encode='ordinal', strategy='uniform')
X_binned = binner.fit_transform(X)

# Equal-frequency bins (quantile-based)
binner = KBinsDiscretizer(n_bins=5, encode='onehot', strategy='quantile')
X_binned = binner.fit_transform(X)

Binarization

Binarizer

  • Converts features to binary (0 or 1) based on threshold
  • Example:
from sklearn.preprocessing import Binarizer

binarizer = Binarizer(threshold=0.5)
X_binary = binarizer.fit_transform(X)

Spline Features

SplineTransformer

  • Creates spline basis functions
  • Useful for capturing non-linear relationships
  • Example:
from sklearn.preprocessing import SplineTransformer

spline = SplineTransformer(n_knots=5, degree=3)
X_splines = spline.fit_transform(X)

Text Feature Extraction

CountVectorizer

CountVectorizer (sklearn.feature_extraction.text.CountVectorizer)

  • Converts text to token count matrix
  • Use for: Bag-of-words representation
  • Example:
from sklearn.feature_extraction.text import CountVectorizer

vectorizer = CountVectorizer(
    max_features=5000,  # Keep top 5000 features
    min_df=2,  # Ignore terms appearing in < 2 documents
    max_df=0.8,  # Ignore terms appearing in > 80% documents
    ngram_range=(1, 2)  # Unigrams and bigrams
)

X_counts = vectorizer.fit_transform(documents)
feature_names = vectorizer.get_feature_names_out()

TfidfVectorizer

TfidfVectorizer

  • TF-IDF (Term Frequency-Inverse Document Frequency) transformation
  • Better than CountVectorizer for most tasks
  • Example:
from sklearn.feature_extraction.text import TfidfVectorizer

vectorizer = TfidfVectorizer(
    max_features=5000,
    min_df=2,
    max_df=0.8,
    ngram_range=(1, 2),
    stop_words='english'  # Remove English stop words
)

X_tfidf = vectorizer.fit_transform(documents)

HashingVectorizer

HashingVectorizer

  • Uses hashing trick for memory efficiency
  • No fit needed, can't reverse transform
  • Use when: Very large vocabulary, streaming data
  • Example:
from sklearn.feature_extraction.text import HashingVectorizer

vectorizer = HashingVectorizer(n_features=2**18)
X_hashed = vectorizer.transform(documents)  # No fit needed

Feature Selection

Filter Methods

Variance Threshold

  • Removes low-variance features
  • Example:
from sklearn.feature_selection import VarianceThreshold

selector = VarianceThreshold(threshold=0.01)
X_selected = selector.fit_transform(X)

SelectKBest / SelectPercentile

  • Select features based on statistical tests
  • Tests: f_classif, chi2, mutual_info_classif
  • Example:
from sklearn.feature_selection import SelectKBest, f_classif

# Select top 10 features
selector = SelectKBest(score_func=f_classif, k=10)
X_selected = selector.fit_transform(X_train, y_train)

# Get selected feature indices
selected_indices = selector.get_support(indices=True)

Wrapper Methods

Recursive Feature Elimination (RFE)

  • Recursively removes features
  • Uses model feature importances
  • Example:
from sklearn.feature_selection import RFE
from sklearn.ensemble import RandomForestClassifier

model = RandomForestClassifier(n_estimators=100, random_state=42)
rfe = RFE(estimator=model, n_features_to_select=10, step=1)
X_selected = rfe.fit_transform(X_train, y_train)

# Get selected features
selected_features = rfe.support_
feature_ranking = rfe.ranking_

RFECV (with Cross-Validation)

  • RFE with cross-validation to find optimal number of features
  • Example:
from sklearn.feature_selection import RFECV

model = RandomForestClassifier(n_estimators=100, random_state=42)
rfecv = RFECV(estimator=model, cv=5, scoring='accuracy')
X_selected = rfecv.fit_transform(X_train, y_train)

print(f"Optimal number of features: {rfecv.n_features_}")

Embedded Methods

SelectFromModel

  • Select features based on model coefficients/importances
  • Works with: Linear models (L1), Tree-based models
  • Example:
from sklearn.feature_selection import SelectFromModel
from sklearn.ensemble import RandomForestClassifier

model = RandomForestClassifier(n_estimators=100, random_state=42)
selector = SelectFromModel(model, threshold='median')
selector.fit(X_train, y_train)
X_selected = selector.transform(X_train)

# Get selected features
selected_features = selector.get_support()

L1-based Feature Selection

from sklearn.linear_model import LogisticRegression
from sklearn.feature_selection import SelectFromModel

model = LogisticRegression(penalty='l1', solver='liblinear', C=0.1)
selector = SelectFromModel(model)
selector.fit(X_train, y_train)
X_selected = selector.transform(X_train)

Handling Outliers

IQR Method

import numpy as np

Q1 = np.percentile(X, 25, axis=0)
Q3 = np.percentile(X, 75, axis=0)
IQR = Q3 - Q1

# Define outlier boundaries
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR

# Remove outliers
mask = np.all((X >= lower_bound) & (X <= upper_bound), axis=1)
X_no_outliers = X[mask]

Winsorization

from scipy.stats import mstats

# Clip outliers at 5th and 95th percentiles
X_winsorized = mstats.winsorize(X, limits=[0.05, 0.05], axis=0)

Custom Transformers

Using FunctionTransformer

from sklearn.preprocessing import FunctionTransformer
import numpy as np

def log_transform(X):
    return np.log1p(X)

transformer = FunctionTransformer(log_transform, inverse_func=np.expm1)
X_transformed = transformer.fit_transform(X)

Creating Custom Transformer

from sklearn.base import BaseEstimator, TransformerMixin

class CustomTransformer(BaseEstimator, TransformerMixin):
    def __init__(self, parameter=1):
        self.parameter = parameter

    def fit(self, X, y=None):
        # Learn parameters from X if needed
        return self

    def transform(self, X):
        # Transform X
        return X * self.parameter

transformer = CustomTransformer(parameter=2)
X_transformed = transformer.fit_transform(X)

Best Practices

Fit on Training Data Only

Always fit transformers on training data only:

# Correct
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)

# Wrong - causes data leakage
scaler = StandardScaler()
X_all_scaled = scaler.fit_transform(np.vstack([X_train, X_test]))

Use Pipelines

Combine preprocessing with models:

from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression

pipeline = Pipeline([
    ('scaler', StandardScaler()),
    ('classifier', LogisticRegression())
])

pipeline.fit(X_train, y_train)

Handle Categorical and Numerical Separately

Use ColumnTransformer:

from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import StandardScaler, OneHotEncoder

numeric_features = ['age', 'income']
categorical_features = ['gender', 'occupation']

preprocessor = ColumnTransformer(
    transformers=[
        ('num', StandardScaler(), numeric_features),
        ('cat', OneHotEncoder(), categorical_features)
    ]
)

X_transformed = preprocessor.fit_transform(X)

Algorithm-Specific Requirements

Require Scaling:

  • SVM, KNN, Neural Networks
  • PCA, Linear/Logistic Regression with regularization
  • K-Means clustering

Don't Require Scaling:

  • Tree-based models (Decision Trees, Random Forest, Gradient Boosting)
  • Naive Bayes

Encoding Requirements:

  • Linear models, SVM, KNN: One-hot encoding for nominal features
  • Tree-based models: Can handle ordinal encoding directly