401 lines
9.8 KiB
Markdown
401 lines
9.8 KiB
Markdown
# TDC Molecule Generation Oracles
|
||
|
||
Oracles are functions that evaluate the quality of generated molecules across specific dimensions. TDC provides 17+ oracle functions for molecular optimization tasks in de novo drug design.
|
||
|
||
## Overview
|
||
|
||
Oracles measure molecular properties and serve two main purposes:
|
||
|
||
1. **Goal-Directed Generation**: Optimize molecules to maximize/minimize specific properties
|
||
2. **Distribution Learning**: Evaluate whether generated molecules match desired property distributions
|
||
|
||
## Using Oracles
|
||
|
||
### Basic Usage
|
||
|
||
```python
|
||
from tdc import Oracle
|
||
|
||
# Initialize oracle
|
||
oracle = Oracle(name='GSK3B')
|
||
|
||
# Evaluate single molecule (SMILES string)
|
||
score = oracle('CC(C)Cc1ccc(cc1)C(C)C(O)=O')
|
||
|
||
# Evaluate multiple molecules
|
||
scores = oracle(['SMILES1', 'SMILES2', 'SMILES3'])
|
||
```
|
||
|
||
### Oracle Categories
|
||
|
||
TDC oracles are organized into several categories based on the molecular property being evaluated.
|
||
|
||
## Biochemical Oracles
|
||
|
||
Predict binding affinity or activity against biological targets.
|
||
|
||
### Target-Specific Oracles
|
||
|
||
**DRD2 - Dopamine Receptor D2**
|
||
```python
|
||
oracle = Oracle(name='DRD2')
|
||
score = oracle(smiles)
|
||
```
|
||
- Measures binding affinity to DRD2 receptor
|
||
- Important for neurological and psychiatric drug development
|
||
- Higher scores indicate stronger binding
|
||
|
||
**GSK3B - Glycogen Synthase Kinase-3 Beta**
|
||
```python
|
||
oracle = Oracle(name='GSK3B')
|
||
score = oracle(smiles)
|
||
```
|
||
- Predicts GSK3β inhibition
|
||
- Relevant for Alzheimer's, diabetes, and cancer research
|
||
- Higher scores indicate better inhibition
|
||
|
||
**JNK3 - c-Jun N-terminal Kinase 3**
|
||
```python
|
||
oracle = Oracle(name='JNK3')
|
||
score = oracle(smiles)
|
||
```
|
||
- Measures JNK3 kinase inhibition
|
||
- Target for neurodegenerative diseases
|
||
- Higher scores indicate stronger inhibition
|
||
|
||
**5HT2A - Serotonin 2A Receptor**
|
||
```python
|
||
oracle = Oracle(name='5HT2A')
|
||
score = oracle(smiles)
|
||
```
|
||
- Predicts serotonin receptor binding
|
||
- Important for psychiatric medications
|
||
- Higher scores indicate stronger binding
|
||
|
||
**ACE - Angiotensin-Converting Enzyme**
|
||
```python
|
||
oracle = Oracle(name='ACE')
|
||
score = oracle(smiles)
|
||
```
|
||
- Measures ACE inhibition
|
||
- Target for hypertension treatment
|
||
- Higher scores indicate better inhibition
|
||
|
||
**MAPK - Mitogen-Activated Protein Kinase**
|
||
```python
|
||
oracle = Oracle(name='MAPK')
|
||
score = oracle(smiles)
|
||
```
|
||
- Predicts MAPK inhibition
|
||
- Target for cancer and inflammatory diseases
|
||
|
||
**CDK - Cyclin-Dependent Kinase**
|
||
```python
|
||
oracle = Oracle(name='CDK')
|
||
score = oracle(smiles)
|
||
```
|
||
- Measures CDK inhibition
|
||
- Important for cancer drug development
|
||
|
||
**P38 - p38 MAP Kinase**
|
||
```python
|
||
oracle = Oracle(name='P38')
|
||
score = oracle(smiles)
|
||
```
|
||
- Predicts p38 MAPK inhibition
|
||
- Target for inflammatory diseases
|
||
|
||
**PARP1 - Poly (ADP-ribose) Polymerase 1**
|
||
```python
|
||
oracle = Oracle(name='PARP1')
|
||
score = oracle(smiles)
|
||
```
|
||
- Measures PARP1 inhibition
|
||
- Target for cancer treatment (DNA repair mechanism)
|
||
|
||
**PIK3CA - Phosphatidylinositol-4,5-Bisphosphate 3-Kinase**
|
||
```python
|
||
oracle = Oracle(name='PIK3CA')
|
||
score = oracle(smiles)
|
||
```
|
||
- Predicts PIK3CA inhibition
|
||
- Important target in oncology
|
||
|
||
## Physicochemical Oracles
|
||
|
||
Evaluate drug-like properties and ADME characteristics.
|
||
|
||
### Drug-Likeness Oracles
|
||
|
||
**QED - Quantitative Estimate of Drug-likeness**
|
||
```python
|
||
oracle = Oracle(name='QED')
|
||
score = oracle(smiles)
|
||
```
|
||
- Combines multiple physicochemical properties
|
||
- Score ranges from 0 (non-drug-like) to 1 (drug-like)
|
||
- Based on Bickerton et al. criteria
|
||
|
||
**Lipinski - Rule of Five**
|
||
```python
|
||
oracle = Oracle(name='Lipinski')
|
||
score = oracle(smiles)
|
||
```
|
||
- Number of Lipinski rule violations
|
||
- Rules: MW ≤ 500, logP ≤ 5, HBD ≤ 5, HBA ≤ 10
|
||
- Score of 0 means fully compliant
|
||
|
||
### Molecular Properties
|
||
|
||
**SA - Synthetic Accessibility**
|
||
```python
|
||
oracle = Oracle(name='SA')
|
||
score = oracle(smiles)
|
||
```
|
||
- Estimates ease of synthesis
|
||
- Score ranges from 1 (easy) to 10 (difficult)
|
||
- Lower scores indicate easier synthesis
|
||
|
||
**LogP - Octanol-Water Partition Coefficient**
|
||
```python
|
||
oracle = Oracle(name='LogP')
|
||
score = oracle(smiles)
|
||
```
|
||
- Measures lipophilicity
|
||
- Important for membrane permeability
|
||
- Typical drug-like range: 0-5
|
||
|
||
**MW - Molecular Weight**
|
||
```python
|
||
oracle = Oracle(name='MW')
|
||
score = oracle(smiles)
|
||
```
|
||
- Returns molecular weight in Daltons
|
||
- Drug-like range typically 150-500 Da
|
||
|
||
## Composite Oracles
|
||
|
||
Combine multiple properties for multi-objective optimization.
|
||
|
||
**Isomer Meta**
|
||
```python
|
||
oracle = Oracle(name='Isomer_Meta')
|
||
score = oracle(smiles)
|
||
```
|
||
- Evaluates specific isomeric properties
|
||
- Used for stereochemistry optimization
|
||
|
||
**Median Molecules**
|
||
```python
|
||
oracle = Oracle(name='Median1', 'Median2')
|
||
score = oracle(smiles)
|
||
```
|
||
- Tests ability to generate molecules with median properties
|
||
- Useful for distribution learning benchmarks
|
||
|
||
**Rediscovery**
|
||
```python
|
||
oracle = Oracle(name='Rediscovery')
|
||
score = oracle(smiles)
|
||
```
|
||
- Measures similarity to known reference molecules
|
||
- Tests ability to regenerate existing drugs
|
||
|
||
**Similarity**
|
||
```python
|
||
oracle = Oracle(name='Similarity')
|
||
score = oracle(smiles)
|
||
```
|
||
- Computes structural similarity to target molecules
|
||
- Based on molecular fingerprints (typically Tanimoto similarity)
|
||
|
||
**Uniqueness**
|
||
```python
|
||
oracle = Oracle(name='Uniqueness')
|
||
scores = oracle(smiles_list)
|
||
```
|
||
- Measures diversity in generated molecule set
|
||
- Returns fraction of unique molecules
|
||
|
||
**Novelty**
|
||
```python
|
||
oracle = Oracle(name='Novelty')
|
||
scores = oracle(smiles_list, training_set)
|
||
```
|
||
- Measures how different generated molecules are from training set
|
||
- Higher scores indicate more novel structures
|
||
|
||
## Specialized Oracles
|
||
|
||
**ASKCOS - Retrosynthesis Scoring**
|
||
```python
|
||
oracle = Oracle(name='ASKCOS')
|
||
score = oracle(smiles)
|
||
```
|
||
- Evaluates synthetic feasibility using retrosynthesis
|
||
- Requires ASKCOS backend (IBM RXN)
|
||
- Scores based on retrosynthetic route availability
|
||
|
||
**Docking Score**
|
||
```python
|
||
oracle = Oracle(name='Docking')
|
||
score = oracle(smiles)
|
||
```
|
||
- Molecular docking score against target protein
|
||
- Requires protein structure and docking software
|
||
- Lower scores typically indicate better binding
|
||
|
||
**Vina - AutoDock Vina Score**
|
||
```python
|
||
oracle = Oracle(name='Vina')
|
||
score = oracle(smiles)
|
||
```
|
||
- Uses AutoDock Vina for protein-ligand docking
|
||
- Predicts binding affinity in kcal/mol
|
||
- More negative scores indicate stronger binding
|
||
|
||
## Multi-Objective Optimization
|
||
|
||
Combine multiple oracles for multi-property optimization:
|
||
|
||
```python
|
||
from tdc import Oracle
|
||
|
||
# Initialize multiple oracles
|
||
qed_oracle = Oracle(name='QED')
|
||
sa_oracle = Oracle(name='SA')
|
||
drd2_oracle = Oracle(name='DRD2')
|
||
|
||
# Define custom scoring function
|
||
def multi_objective_score(smiles):
|
||
qed = qed_oracle(smiles)
|
||
sa = 1 / (1 + sa_oracle(smiles)) # Invert SA (lower is better)
|
||
drd2 = drd2_oracle(smiles)
|
||
|
||
# Weighted combination
|
||
return 0.3 * qed + 0.3 * sa + 0.4 * drd2
|
||
|
||
# Evaluate molecule
|
||
score = multi_objective_score('CC(C)Cc1ccc(cc1)C(C)C(O)=O')
|
||
```
|
||
|
||
## Oracle Performance Considerations
|
||
|
||
### Speed
|
||
- **Fast**: QED, SA, LogP, MW, Lipinski (rule-based calculations)
|
||
- **Medium**: Target-specific ML models (DRD2, GSK3B, etc.)
|
||
- **Slow**: Docking-based oracles (Vina, ASKCOS)
|
||
|
||
### Reliability
|
||
- Oracles are ML models trained on specific datasets
|
||
- May not generalize to all chemical spaces
|
||
- Use multiple oracles to validate results
|
||
|
||
### Batch Processing
|
||
```python
|
||
# Efficient batch evaluation
|
||
oracle = Oracle(name='GSK3B')
|
||
smiles_list = ['SMILES1', 'SMILES2', ..., 'SMILES1000']
|
||
scores = oracle(smiles_list) # Faster than individual calls
|
||
```
|
||
|
||
## Common Workflows
|
||
|
||
### Goal-Directed Generation
|
||
```python
|
||
from tdc import Oracle
|
||
from tdc.generation import MolGen
|
||
|
||
# Load training data
|
||
data = MolGen(name='ChEMBL_V29')
|
||
train_smiles = data.get_data()['Drug'].tolist()
|
||
|
||
# Initialize oracle
|
||
oracle = Oracle(name='GSK3B')
|
||
|
||
# Generate molecules (user implements generative model)
|
||
# generated_smiles = generator.generate(n=1000)
|
||
|
||
# Evaluate generated molecules
|
||
scores = oracle(generated_smiles)
|
||
best_molecules = [(s, score) for s, score in zip(generated_smiles, scores)]
|
||
best_molecules.sort(key=lambda x: x[1], reverse=True)
|
||
|
||
print(f"Top 10 molecules:")
|
||
for smiles, score in best_molecules[:10]:
|
||
print(f"{smiles}: {score:.3f}")
|
||
```
|
||
|
||
### Distribution Learning
|
||
```python
|
||
from tdc import Oracle
|
||
import numpy as np
|
||
|
||
# Initialize oracle
|
||
oracle = Oracle(name='QED')
|
||
|
||
# Evaluate training set
|
||
train_scores = oracle(train_smiles)
|
||
train_mean = np.mean(train_scores)
|
||
train_std = np.std(train_scores)
|
||
|
||
# Evaluate generated set
|
||
gen_scores = oracle(generated_smiles)
|
||
gen_mean = np.mean(gen_scores)
|
||
gen_std = np.std(gen_scores)
|
||
|
||
# Compare distributions
|
||
print(f"Training: μ={train_mean:.3f}, σ={train_std:.3f}")
|
||
print(f"Generated: μ={gen_mean:.3f}, σ={gen_std:.3f}")
|
||
```
|
||
|
||
## Integration with TDC Benchmarks
|
||
|
||
```python
|
||
from tdc.generation import MolGen
|
||
|
||
# Use with GuacaMol benchmark
|
||
data = MolGen(name='GuacaMol')
|
||
|
||
# Oracles are automatically integrated
|
||
# Each GuacaMol task has associated oracle
|
||
benchmark_results = data.evaluate_guacamol(
|
||
generated_molecules=your_molecules,
|
||
oracle_name='GSK3B'
|
||
)
|
||
```
|
||
|
||
## Notes
|
||
|
||
- Oracle scores are predictions, not experimental measurements
|
||
- Always validate top candidates experimentally
|
||
- Different oracles may have different score ranges and interpretations
|
||
- Some oracles require additional dependencies or API access
|
||
- Check oracle documentation for specific details: https://tdcommons.ai/functions/oracles/
|
||
|
||
## Adding Custom Oracles
|
||
|
||
To create custom oracle functions:
|
||
|
||
```python
|
||
class CustomOracle:
|
||
def __init__(self):
|
||
# Initialize your model/method
|
||
pass
|
||
|
||
def __call__(self, smiles):
|
||
# Implement your scoring logic
|
||
# Return score or list of scores
|
||
pass
|
||
|
||
# Use like built-in oracles
|
||
custom_oracle = CustomOracle()
|
||
score = custom_oracle('CC(C)Cc1ccc(cc1)C(C)C(O)=O')
|
||
```
|
||
|
||
## References
|
||
|
||
- TDC Oracles Documentation: https://tdcommons.ai/functions/oracles/
|
||
- GuacaMol Paper: "GuacaMol: Benchmarking Models for de Novo Molecular Design"
|
||
- MOSES Paper: "Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models"
|