Files
gh-k-dense-ai-claude-scient…/skills/pymoo/references/constraints_mcdm.md
2025-11-30 08:30:10 +08:00

418 lines
11 KiB
Markdown

# Pymoo Constraints and Decision Making Reference
Reference for constraint handling and multi-criteria decision making in pymoo.
## Constraint Handling
### Defining Constraints
Constraints are specified in the Problem definition:
```python
from pymoo.core.problem import ElementwiseProblem
import numpy as np
class ConstrainedProblem(ElementwiseProblem):
def __init__(self):
super().__init__(
n_var=2,
n_obj=2,
n_ieq_constr=2, # Number of inequality constraints
n_eq_constr=1, # Number of equality constraints
xl=np.array([0, 0]),
xu=np.array([5, 5])
)
def _evaluate(self, x, out, *args, **kwargs):
# Objectives
f1 = x[0]**2 + x[1]**2
f2 = (x[0]-1)**2 + (x[1]-1)**2
out["F"] = [f1, f2]
# Inequality constraints (formulated as g(x) <= 0)
g1 = x[0] + x[1] - 5 # x[0] + x[1] >= 5 → -(x[0] + x[1] - 5) <= 0
g2 = x[0]**2 + x[1]**2 - 25 # x[0]^2 + x[1]^2 <= 25
out["G"] = [g1, g2]
# Equality constraints (formulated as h(x) = 0)
h1 = x[0] - 2*x[1]
out["H"] = [h1]
```
**Constraint formulation rules:**
- Inequality: `g(x) <= 0` (feasible when negative or zero)
- Equality: `h(x) = 0` (feasible when zero)
- Convert `g(x) >= 0` to `-g(x) <= 0`
### Constraint Handling Techniques
#### 1. Feasibility First (Default)
**Mechanism:** Always prefer feasible over infeasible solutions
**Comparison:**
1. Both feasible → compare by objective values
2. One feasible, one infeasible → feasible wins
3. Both infeasible → compare by constraint violation
**Usage:**
```python
from pymoo.algorithms.moo.nsga2 import NSGA2
# Feasibility first is default for most algorithms
algorithm = NSGA2(pop_size=100)
```
**Advantages:**
- Works with any sorting-based algorithm
- Simple and effective
- No parameter tuning
**Disadvantages:**
- May struggle with small feasible regions
- Can ignore good infeasible solutions
#### 2. Penalty Methods
**Mechanism:** Add penalty to objective based on constraint violation
**Formula:** `F_penalized = F + penalty_factor * violation`
**Usage:**
```python
from pymoo.algorithms.soo.nonconvex.ga import GA
from pymoo.constraints.as_penalty import ConstraintsAsPenalty
# Wrap problem with penalty
problem_with_penalty = ConstraintsAsPenalty(problem, penalty=1e6)
algorithm = GA(pop_size=100)
```
**Parameters:**
- `penalty`: Penalty coefficient (tune based on problem scale)
**Advantages:**
- Converts constrained to unconstrained problem
- Works with any optimization algorithm
**Disadvantages:**
- Penalty parameter sensitive
- May need problem-specific tuning
#### 3. Constraint as Objective
**Mechanism:** Treat constraint violation as additional objective
**Result:** Multi-objective problem with M+1 objectives (M original + constraint)
**Usage:**
```python
from pymoo.algorithms.moo.nsga2 import NSGA2
from pymoo.constraints.as_obj import ConstraintsAsObjective
# Add constraint violation as objective
problem_with_cv_obj = ConstraintsAsObjective(problem)
algorithm = NSGA2(pop_size=100)
```
**Advantages:**
- No parameter tuning
- Maintains infeasible solutions that may be useful
- Works well when feasible region is small
**Disadvantages:**
- Increases problem dimensionality
- More complex Pareto front analysis
#### 4. Epsilon-Constraint Handling
**Mechanism:** Dynamic feasibility threshold
**Concept:** Gradually tighten constraint tolerance over generations
**Advantages:**
- Smooth transition to feasible region
- Helps with difficult constraint landscapes
**Disadvantages:**
- Algorithm-specific implementation
- Requires parameter tuning
#### 5. Repair Operators
**Mechanism:** Modify infeasible solutions to satisfy constraints
**Application:** After crossover/mutation, repair offspring
**Usage:**
```python
from pymoo.core.repair import Repair
class MyRepair(Repair):
def _do(self, problem, X, **kwargs):
# Project X onto feasible region
# Example: clip to bounds
X = np.clip(X, problem.xl, problem.xu)
return X
from pymoo.algorithms.soo.nonconvex.ga import GA
algorithm = GA(pop_size=100, repair=MyRepair())
```
**Advantages:**
- Maintains feasibility throughout optimization
- Can encode domain knowledge
**Disadvantages:**
- Requires problem-specific implementation
- May restrict search
### Constraint-Handling Algorithms
Some algorithms have built-in constraint handling:
#### SRES (Stochastic Ranking Evolution Strategy)
**Purpose:** Single-objective constrained optimization
**Mechanism:** Stochastic ranking balances objectives and constraints
**Usage:**
```python
from pymoo.algorithms.soo.nonconvex.sres import SRES
algorithm = SRES()
```
#### ISRES (Improved SRES)
**Purpose:** Enhanced constrained optimization
**Improvements:** Better parameter adaptation
**Usage:**
```python
from pymoo.algorithms.soo.nonconvex.isres import ISRES
algorithm = ISRES()
```
### Constraint Handling Guidelines
**Choose technique based on:**
| Problem Characteristic | Recommended Technique |
|------------------------|----------------------|
| Large feasible region | Feasibility First |
| Small feasible region | Constraint as Objective, Repair |
| Heavily constrained | SRES/ISRES, Epsilon-constraint |
| Linear constraints | Repair (projection) |
| Nonlinear constraints | Feasibility First, Penalty |
| Known feasible solutions | Biased initialization |
## Multi-Criteria Decision Making (MCDM)
After obtaining a Pareto front, MCDM helps select preferred solution(s).
### Decision Making Context
**Pareto front characteristics:**
- Multiple non-dominated solutions
- Each represents different trade-off
- No objectively "best" solution
- Requires decision maker preferences
### MCDM Methods in Pymoo
#### 1. Pseudo-Weights
**Concept:** Weight each objective, select solution minimizing weighted sum
**Formula:** `score = w1*f1 + w2*f2 + ... + wM*fM`
**Usage:**
```python
from pymoo.mcdm.pseudo_weights import PseudoWeights
# Define weights (must sum to 1)
weights = np.array([0.3, 0.7]) # 30% weight on f1, 70% on f2
dm = PseudoWeights(weights)
best_idx = dm.do(result.F)
best_solution = result.X[best_idx]
```
**When to use:**
- Clear preference articulation available
- Objectives commensurable
- Linear trade-offs acceptable
**Limitations:**
- Requires weight specification
- Linear assumption may not capture preferences
- Sensitive to objective scaling
#### 2. Compromise Programming
**Concept:** Select solution closest to ideal point
**Metric:** Distance to ideal (e.g., Euclidean, Tchebycheff)
**Usage:**
```python
from pymoo.mcdm.compromise_programming import CompromiseProgramming
dm = CompromiseProgramming()
best_idx = dm.do(result.F, ideal=ideal_point, nadir=nadir_point)
```
**When to use:**
- Ideal objective values known or estimable
- Balanced consideration of all objectives
- No clear weight preferences
#### 3. Interactive Decision Making
**Concept:** Iterative preference refinement
**Process:**
1. Show representative solutions to decision maker
2. Gather feedback on preferences
3. Focus search on preferred regions
4. Repeat until satisfactory solution found
**Approaches:**
- Reference point methods
- Trade-off analysis
- Progressive preference articulation
### Decision Making Workflow
**Step 1: Normalize objectives**
```python
# Normalize to [0, 1] for fair comparison
F_norm = (result.F - result.F.min(axis=0)) / (result.F.max(axis=0) - result.F.min(axis=0))
```
**Step 2: Analyze trade-offs**
```python
from pymoo.visualization.scatter import Scatter
plot = Scatter()
plot.add(result.F)
plot.show()
# Identify knee points, extreme solutions
```
**Step 3: Apply MCDM method**
```python
from pymoo.mcdm.pseudo_weights import PseudoWeights
weights = np.array([0.4, 0.6]) # Based on preferences
dm = PseudoWeights(weights)
selected = dm.do(F_norm)
```
**Step 4: Validate selection**
```python
# Visualize selected solution
from pymoo.visualization.petal import Petal
plot = Petal()
plot.add(result.F[selected], label="Selected")
# Add other candidates for comparison
plot.show()
```
### Advanced MCDM Techniques
#### Knee Point Detection
**Concept:** Solutions where small improvement in one objective causes large degradation in others
**Usage:**
```python
from pymoo.mcdm.knee import KneePoint
km = KneePoint()
knee_idx = km.do(result.F)
knee_solutions = result.X[knee_idx]
```
**When to use:**
- No clear preferences
- Balanced trade-offs desired
- Convex Pareto fronts
#### Hypervolume Contribution
**Concept:** Select solutions contributing most to hypervolume
**Use case:** Maintain diverse subset of solutions
**Usage:**
```python
from pymoo.indicators.hv import HV
hv = HV(ref_point=reference_point)
hv_contributions = hv.calc_contributions(result.F)
# Select top contributors
top_k = 5
top_indices = np.argsort(hv_contributions)[-top_k:]
selected_solutions = result.X[top_indices]
```
### Decision Making Guidelines
**When decision maker has:**
| Preference Information | Recommended Method |
|------------------------|-------------------|
| Clear objective weights | Pseudo-Weights |
| Ideal target values | Compromise Programming |
| No prior preferences | Knee Point, Visual inspection |
| Conflicting criteria | Interactive methods |
| Need diverse subset | Hypervolume contribution |
**Best practices:**
1. **Normalize objectives** before MCDM
2. **Visualize Pareto front** to understand trade-offs
3. **Consider multiple methods** for robust selection
4. **Validate results** with domain experts
5. **Document assumptions** and preference sources
6. **Perform sensitivity analysis** on weights/parameters
### Integration Example
Complete workflow with constraint handling and decision making:
```python
from pymoo.algorithms.moo.nsga2 import NSGA2
from pymoo.optimize import minimize
from pymoo.mcdm.pseudo_weights import PseudoWeights
import numpy as np
# Define constrained problem
problem = MyConstrainedProblem()
# Setup algorithm with feasibility-first constraint handling
algorithm = NSGA2(
pop_size=100,
eliminate_duplicates=True
)
# Optimize
result = minimize(
problem,
algorithm,
('n_gen', 200),
seed=1,
verbose=True
)
# Filter feasible solutions only
feasible_mask = result.CV[:, 0] == 0 # Constraint violation = 0
F_feasible = result.F[feasible_mask]
X_feasible = result.X[feasible_mask]
# Normalize objectives
F_norm = (F_feasible - F_feasible.min(axis=0)) / (F_feasible.max(axis=0) - F_feasible.min(axis=0))
# Apply MCDM
weights = np.array([0.5, 0.5])
dm = PseudoWeights(weights)
best_idx = dm.do(F_norm)
# Get final solution
best_solution = X_feasible[best_idx]
best_objectives = F_feasible[best_idx]
print(f"Selected solution: {best_solution}")
print(f"Objective values: {best_objectives}")
```