11 KiB
11 KiB
Matplotlib API Reference
This document provides a quick reference for the most commonly used matplotlib classes and methods.
Core Classes
Figure
The top-level container for all plot elements.
Creation:
fig = plt.figure(figsize=(10, 6), dpi=100, facecolor='white')
fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(10, 6))
fig, axes = plt.subplots(2, 2, figsize=(12, 10))
Key Methods:
fig.add_subplot(nrows, ncols, index)- Add a subplotfig.add_axes([left, bottom, width, height])- Add axes at specific positionfig.savefig(filename, dpi=300, bbox_inches='tight')- Save figurefig.tight_layout()- Adjust spacing to prevent overlapsfig.suptitle(title)- Set figure titlefig.legend()- Create figure-level legendfig.colorbar(mappable)- Add colorbar to figureplt.close(fig)- Close figure to free memory
Key Attributes:
fig.axes- List of all axes in the figurefig.dpi- Resolution in dots per inchfig.figsize- Figure dimensions in inches (width, height)
Axes
The actual plotting area where data is visualized.
Creation:
fig, ax = plt.subplots() # Single axes
ax = fig.add_subplot(111) # Alternative method
Plotting Methods:
Line plots:
ax.plot(x, y, **kwargs)- Line plotax.step(x, y, where='pre'/'mid'/'post')- Step plotax.errorbar(x, y, yerr, xerr)- Error bars
Scatter plots:
ax.scatter(x, y, s=size, c=color, marker='o', alpha=0.5)- Scatter plot
Bar charts:
ax.bar(x, height, width=0.8, align='center')- Vertical bar chartax.barh(y, width)- Horizontal bar chart
Statistical plots:
ax.hist(data, bins=10, density=False)- Histogramax.boxplot(data, labels=None)- Box plotax.violinplot(data)- Violin plot
2D plots:
ax.imshow(array, cmap='viridis', aspect='auto')- Display image/matrixax.contour(X, Y, Z, levels=10)- Contour linesax.contourf(X, Y, Z, levels=10)- Filled contoursax.pcolormesh(X, Y, Z)- Pseudocolor plot
Filling:
ax.fill_between(x, y1, y2, alpha=0.3)- Fill between curvesax.fill_betweenx(y, x1, x2)- Fill between vertical curves
Text and annotations:
ax.text(x, y, text, fontsize=12)- Add textax.annotate(text, xy=(x, y), xytext=(x2, y2), arrowprops={})- Annotate with arrow
Customization Methods:
Labels and titles:
ax.set_xlabel(label, fontsize=12)- Set x-axis labelax.set_ylabel(label, fontsize=12)- Set y-axis labelax.set_title(title, fontsize=14)- Set axes title
Limits and scales:
ax.set_xlim(left, right)- Set x-axis limitsax.set_ylim(bottom, top)- Set y-axis limitsax.set_xscale('linear'/'log'/'symlog')- Set x-axis scaleax.set_yscale('linear'/'log'/'symlog')- Set y-axis scale
Ticks:
ax.set_xticks(positions)- Set x-tick positionsax.set_xticklabels(labels)- Set x-tick labelsax.tick_params(axis='both', labelsize=10)- Customize tick appearance
Grid and spines:
ax.grid(True, alpha=0.3, linestyle='--')- Add gridax.spines['top'].set_visible(False)- Hide top spineax.spines['right'].set_visible(False)- Hide right spine
Legend:
ax.legend(loc='best', fontsize=10, frameon=True)- Add legendax.legend(handles, labels)- Custom legend
Aspect and layout:
ax.set_aspect('equal'/'auto'/ratio)- Set aspect ratioax.invert_xaxis()- Invert x-axisax.invert_yaxis()- Invert y-axis
pyplot Module
High-level interface for quick plotting.
Figure creation:
plt.figure()- Create new figureplt.subplots()- Create figure and axesplt.subplot()- Add subplot to current figure
Plotting (uses current axes):
plt.plot()- Line plotplt.scatter()- Scatter plotplt.bar()- Bar chartplt.hist()- Histogram- (All axes methods available)
Display and save:
plt.show()- Display figureplt.savefig()- Save figureplt.close()- Close figure
Style:
plt.style.use(style_name)- Apply style sheetplt.style.available- List available styles
State management:
plt.gca()- Get current axesplt.gcf()- Get current figureplt.sca(ax)- Set current axesplt.clf()- Clear current figureplt.cla()- Clear current axes
Line and Marker Styles
Line Styles
'-'or'solid'- Solid line'--'or'dashed'- Dashed line'-.'or'dashdot'- Dash-dot line':'or'dotted'- Dotted line''or' 'or'None'- No line
Marker Styles
'.'- Point marker'o'- Circle marker'v','^','<','>'- Triangle markers's'- Square marker'p'- Pentagon marker'*'- Star marker'h','H'- Hexagon markers'+'- Plus marker'x'- X marker'D','d'- Diamond markers
Color Specifications
Single character shortcuts:
'b'- Blue'g'- Green'r'- Red'c'- Cyan'm'- Magenta'y'- Yellow'k'- Black'w'- White
Named colors:
'steelblue','coral','teal', etc.- See full list: https://matplotlib.org/stable/gallery/color/named_colors.html
Other formats:
- Hex:
'#FF5733' - RGB tuple:
(0.1, 0.2, 0.3) - RGBA tuple:
(0.1, 0.2, 0.3, 0.5)
Common Parameters
Plot Function Parameters
ax.plot(x, y,
color='blue', # Line color
linewidth=2, # Line width
linestyle='--', # Line style
marker='o', # Marker style
markersize=8, # Marker size
markerfacecolor='red', # Marker fill color
markeredgecolor='black',# Marker edge color
markeredgewidth=1, # Marker edge width
alpha=0.7, # Transparency (0-1)
label='data', # Legend label
zorder=2, # Drawing order
rasterized=True # Rasterize for smaller file size
)
Scatter Function Parameters
ax.scatter(x, y,
s=50, # Size (scalar or array)
c='blue', # Color (scalar, array, or sequence)
marker='o', # Marker style
cmap='viridis', # Colormap (if c is numeric)
alpha=0.5, # Transparency
edgecolors='black', # Edge color
linewidths=1, # Edge width
vmin=0, vmax=1, # Color scale limits
label='data' # Legend label
)
Text Parameters
ax.text(x, y, text,
fontsize=12, # Font size
fontweight='normal', # 'normal', 'bold', 'heavy', 'light'
fontstyle='normal', # 'normal', 'italic', 'oblique'
fontfamily='sans-serif',# Font family
color='black', # Text color
alpha=1.0, # Transparency
ha='center', # Horizontal alignment: 'left', 'center', 'right'
va='center', # Vertical alignment: 'top', 'center', 'bottom', 'baseline'
rotation=0, # Rotation angle in degrees
bbox=dict( # Background box
facecolor='white',
edgecolor='black',
boxstyle='round'
)
)
rcParams Configuration
Common rcParams settings for global customization:
# Font settings
plt.rcParams['font.family'] = 'sans-serif'
plt.rcParams['font.sans-serif'] = ['Arial', 'Helvetica']
plt.rcParams['font.size'] = 12
# Figure settings
plt.rcParams['figure.figsize'] = (10, 6)
plt.rcParams['figure.dpi'] = 100
plt.rcParams['figure.facecolor'] = 'white'
plt.rcParams['savefig.dpi'] = 300
plt.rcParams['savefig.bbox'] = 'tight'
# Axes settings
plt.rcParams['axes.labelsize'] = 14
plt.rcParams['axes.titlesize'] = 16
plt.rcParams['axes.grid'] = True
plt.rcParams['axes.grid.alpha'] = 0.3
# Line settings
plt.rcParams['lines.linewidth'] = 2
plt.rcParams['lines.markersize'] = 8
# Tick settings
plt.rcParams['xtick.labelsize'] = 10
plt.rcParams['ytick.labelsize'] = 10
plt.rcParams['xtick.direction'] = 'in' # 'in', 'out', 'inout'
plt.rcParams['ytick.direction'] = 'in'
# Legend settings
plt.rcParams['legend.fontsize'] = 12
plt.rcParams['legend.frameon'] = True
plt.rcParams['legend.framealpha'] = 0.8
# Grid settings
plt.rcParams['grid.alpha'] = 0.3
plt.rcParams['grid.linestyle'] = '--'
GridSpec for Complex Layouts
from matplotlib.gridspec import GridSpec
fig = plt.figure(figsize=(12, 8))
gs = GridSpec(3, 3, figure=fig, hspace=0.3, wspace=0.3)
# Span multiple cells
ax1 = fig.add_subplot(gs[0, :]) # Top row, all columns
ax2 = fig.add_subplot(gs[1:, 0]) # Bottom two rows, first column
ax3 = fig.add_subplot(gs[1, 1:]) # Middle row, last two columns
ax4 = fig.add_subplot(gs[2, 1]) # Bottom row, middle column
ax5 = fig.add_subplot(gs[2, 2]) # Bottom row, right column
3D Plotting
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
# Plot types
ax.plot(x, y, z) # 3D line
ax.scatter(x, y, z) # 3D scatter
ax.plot_surface(X, Y, Z) # 3D surface
ax.plot_wireframe(X, Y, Z) # 3D wireframe
ax.contour(X, Y, Z) # 3D contour
ax.bar3d(x, y, z, dx, dy, dz) # 3D bar
# Customization
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
ax.view_init(elev=30, azim=45) # Set viewing angle
Animation
from matplotlib.animation import FuncAnimation
fig, ax = plt.subplots()
line, = ax.plot([], [])
def init():
ax.set_xlim(0, 2*np.pi)
ax.set_ylim(-1, 1)
return line,
def update(frame):
x = np.linspace(0, 2*np.pi, 100)
y = np.sin(x + frame/10)
line.set_data(x, y)
return line,
anim = FuncAnimation(fig, update, init_func=init,
frames=100, interval=50, blit=True)
# Save animation
anim.save('animation.gif', writer='pillow', fps=20)
anim.save('animation.mp4', writer='ffmpeg', fps=20)
Image Operations
# Read and display image
img = plt.imread('image.png')
ax.imshow(img)
# Display matrix as image
ax.imshow(matrix, cmap='viridis', aspect='auto',
interpolation='nearest', origin='lower')
# Colorbar
cbar = plt.colorbar(im, ax=ax)
cbar.set_label('Values')
# Image extent (set coordinates)
ax.imshow(img, extent=[x_min, x_max, y_min, y_max])
Event Handling
# Mouse click event
def on_click(event):
if event.inaxes:
print(f'Clicked at x={event.xdata:.2f}, y={event.ydata:.2f}')
fig.canvas.mpl_connect('button_press_event', on_click)
# Key press event
def on_key(event):
print(f'Key pressed: {event.key}')
fig.canvas.mpl_connect('key_press_event', on_key)
Useful Utilities
# Get current axis limits
xlims = ax.get_xlim()
ylims = ax.get_ylim()
# Set equal aspect ratio
ax.set_aspect('equal', adjustable='box')
# Share axes between subplots
fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True)
# Twin axes (two y-axes)
ax2 = ax1.twinx()
# Remove tick labels
ax.set_xticklabels([])
ax.set_yticklabels([])
# Scientific notation
ax.ticklabel_format(style='scientific', axis='y', scilimits=(0,0))
# Date formatting
import matplotlib.dates as mdates
ax.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d'))
ax.xaxis.set_major_locator(mdates.DayLocator(interval=7))