Files
gh-k-dense-ai-claude-scient…/skills/gget/scripts/enrichment_pipeline.py
2025-11-30 08:30:10 +08:00

236 lines
7.0 KiB
Python
Executable File

#!/usr/bin/env python3
"""
Enrichment Analysis Pipeline
Perform comprehensive enrichment analysis on a gene list
"""
import argparse
import sys
from pathlib import Path
import gget
import pandas as pd
def read_gene_list(file_path):
"""Read gene list from file (one gene per line or CSV)."""
file_path = Path(file_path)
if file_path.suffix == ".csv":
df = pd.read_csv(file_path)
# Assume first column contains gene names
genes = df.iloc[:, 0].tolist()
else:
# Plain text file
with open(file_path, "r") as f:
genes = [line.strip() for line in f if line.strip()]
return genes
def enrichment_pipeline(
gene_list,
species="human",
background=None,
output_prefix="enrichment",
plot=True,
):
"""
Perform comprehensive enrichment analysis.
Args:
gene_list: List of gene symbols
species: Species for analysis
background: Background gene list (optional)
output_prefix: Prefix for output files
plot: Whether to generate plots
"""
print("Enrichment Analysis Pipeline")
print("=" * 60)
print(f"Analyzing {len(gene_list)} genes")
print(f"Species: {species}\n")
# Database categories to analyze
databases = {
"pathway": "KEGG Pathways",
"ontology": "Gene Ontology (Biological Process)",
"transcription": "Transcription Factors (ChEA)",
"diseases_drugs": "Disease Associations (GWAS)",
"celltypes": "Cell Type Markers (PanglaoDB)",
}
results = {}
for db_key, db_name in databases.items():
print(f"\nAnalyzing: {db_name}")
print("-" * 60)
try:
enrichment = gget.enrichr(
gene_list,
database=db_key,
species=species,
background_list=background,
plot=plot,
)
if enrichment is not None and len(enrichment) > 0:
# Save results
output_file = f"{output_prefix}_{db_key}.csv"
enrichment.to_csv(output_file, index=False)
print(f"Results saved to: {output_file}")
# Show top 5 results
print(f"\nTop 5 enriched terms:")
for i, row in enrichment.head(5).iterrows():
term = row.get("name", row.get("term", "Unknown"))
p_val = row.get(
"adjusted_p_value",
row.get("p_value", row.get("Adjusted P-value", 1)),
)
print(f" {i+1}. {term}")
print(f" P-value: {p_val:.2e}")
results[db_key] = enrichment
else:
print("No significant results found")
except Exception as e:
print(f"Error: {e}")
# Generate summary report
print("\n" + "=" * 60)
print("Generating summary report...")
summary = []
for db_key, db_name in databases.items():
if db_key in results and len(results[db_key]) > 0:
summary.append(
{
"Database": db_name,
"Total Terms": len(results[db_key]),
"Top Term": results[db_key].iloc[0].get(
"name", results[db_key].iloc[0].get("term", "N/A")
),
}
)
if summary:
summary_df = pd.DataFrame(summary)
summary_file = f"{output_prefix}_summary.csv"
summary_df.to_csv(summary_file, index=False)
print(f"\nSummary saved to: {summary_file}")
print("\n" + summary_df.to_string(index=False))
else:
print("\nNo enrichment results to summarize")
# Get expression data for genes
print("\n" + "=" * 60)
print("Getting expression data for input genes...")
try:
# Get tissue expression for first few genes
expr_data = []
for gene in gene_list[:5]: # Limit to first 5
print(f" Getting expression for {gene}...")
try:
tissue_expr = gget.archs4(gene, which="tissue")
top_tissue = tissue_expr.nlargest(1, "median").iloc[0]
expr_data.append(
{
"Gene": gene,
"Top Tissue": top_tissue["tissue"],
"Median Expression": top_tissue["median"],
}
)
except Exception as e:
print(f" Warning: {e}")
if expr_data:
expr_df = pd.DataFrame(expr_data)
expr_file = f"{output_prefix}_expression.csv"
expr_df.to_csv(expr_file, index=False)
print(f"\nExpression data saved to: {expr_file}")
except Exception as e:
print(f"Error getting expression data: {e}")
print("\n" + "=" * 60)
print("Enrichment analysis complete!")
print(f"\nOutput files (prefix: {output_prefix}):")
for db_key in databases.keys():
if db_key in results:
print(f" - {output_prefix}_{db_key}.csv")
print(f" - {output_prefix}_summary.csv")
print(f" - {output_prefix}_expression.csv")
return True
def main():
parser = argparse.ArgumentParser(
description="Perform comprehensive enrichment analysis using gget"
)
parser.add_argument(
"genes",
help="Gene list file (one gene per line or CSV with genes in first column)",
)
parser.add_argument(
"-s",
"--species",
default="human",
help="Species (human, mouse, fly, yeast, worm, fish)",
)
parser.add_argument(
"-b", "--background", help="Background gene list file (optional)"
)
parser.add_argument(
"-o", "--output", default="enrichment", help="Output prefix (default: enrichment)"
)
parser.add_argument(
"--no-plot", action="store_true", help="Disable plotting"
)
args = parser.parse_args()
# Read gene list
if not Path(args.genes).exists():
print(f"Error: File not found: {args.genes}")
sys.exit(1)
try:
gene_list = read_gene_list(args.genes)
print(f"Read {len(gene_list)} genes from {args.genes}")
# Read background if provided
background = None
if args.background:
if Path(args.background).exists():
background = read_gene_list(args.background)
print(f"Read {len(background)} background genes from {args.background}")
else:
print(f"Warning: Background file not found: {args.background}")
success = enrichment_pipeline(
gene_list,
species=args.species,
background=background,
output_prefix=args.output,
plot=not args.no_plot,
)
sys.exit(0 if success else 1)
except KeyboardInterrupt:
print("\n\nAnalysis interrupted by user")
sys.exit(1)
except Exception as e:
print(f"\n\nError: {e}")
import traceback
traceback.print_exc()
sys.exit(1)
if __name__ == "__main__":
main()