25 KiB
25 KiB
gget Workflow Examples
Extended workflow examples demonstrating how to combine multiple gget modules for common bioinformatics tasks.
Table of Contents
- Complete Gene Analysis Pipeline
- Comparative Structural Biology
- Cancer Genomics Analysis
- Single-Cell Expression Analysis
- Building Reference Transcriptomes
- Mutation Impact Assessment
- Drug Target Discovery
Complete Gene Analysis Pipeline
Comprehensive analysis of a gene from discovery to functional annotation.
import gget
import pandas as pd
# Step 1: Search for genes of interest
print("Step 1: Searching for GABA receptor genes...")
search_results = gget.search(["GABA", "receptor", "alpha"],
species="homo_sapiens",
andor="and")
print(f"Found {len(search_results)} genes")
# Step 2: Get detailed information
print("\nStep 2: Getting detailed information...")
gene_ids = search_results["ensembl_id"].tolist()[:5] # Top 5 genes
gene_info = gget.info(gene_ids, pdb=True)
print(gene_info[["ensembl_id", "gene_name", "uniprot_id", "description"]])
# Step 3: Retrieve sequences
print("\nStep 3: Retrieving sequences...")
nucleotide_seqs = gget.seq(gene_ids)
protein_seqs = gget.seq(gene_ids, translate=True)
# Save sequences
with open("gaba_receptors_nt.fasta", "w") as f:
f.write(nucleotide_seqs)
with open("gaba_receptors_aa.fasta", "w") as f:
f.write(protein_seqs)
# Step 4: Get expression data
print("\nStep 4: Getting tissue expression...")
for gene_id, gene_name in zip(gene_ids, gene_info["gene_name"]):
expr_data = gget.archs4(gene_name, which="tissue")
print(f"\n{gene_name} expression:")
print(expr_data.head())
# Step 5: Find correlated genes
print("\nStep 5: Finding correlated genes...")
correlated = gget.archs4(gene_info["gene_name"].iloc[0], which="correlation")
correlated_top = correlated.head(20)
print(correlated_top)
# Step 6: Enrichment analysis on correlated genes
print("\nStep 6: Performing enrichment analysis...")
gene_list = correlated_top["gene_symbol"].tolist()
enrichment = gget.enrichr(gene_list, database="ontology", plot=True)
print(enrichment.head(10))
# Step 7: Get disease associations
print("\nStep 7: Getting disease associations...")
for gene_id, gene_name in zip(gene_ids[:3], gene_info["gene_name"][:3]):
diseases = gget.opentargets(gene_id, resource="diseases", limit=5)
print(f"\n{gene_name} disease associations:")
print(diseases)
# Step 8: Check for orthologs
print("\nStep 8: Finding orthologs...")
orthologs = gget.bgee(gene_ids[0], type="orthologs")
print(orthologs)
print("\nComplete gene analysis pipeline finished!")
Comparative Structural Biology
Compare protein structures across species and analyze functional motifs.
import gget
# Define genes for comparison
human_gene = "ENSG00000169174" # PCSK9
mouse_gene = "ENSMUSG00000044254" # Pcsk9
print("Comparative Structural Biology Workflow")
print("=" * 50)
# Step 1: Get gene information
print("\n1. Getting gene information...")
human_info = gget.info([human_gene])
mouse_info = gget.info([mouse_gene])
print(f"Human: {human_info['gene_name'].iloc[0]}")
print(f"Mouse: {mouse_info['gene_name'].iloc[0]}")
# Step 2: Retrieve protein sequences
print("\n2. Retrieving protein sequences...")
human_seq = gget.seq(human_gene, translate=True)
mouse_seq = gget.seq(mouse_gene, translate=True)
# Save to file for alignment
with open("pcsk9_sequences.fasta", "w") as f:
f.write(human_seq)
f.write("\n")
f.write(mouse_seq)
# Step 3: Align sequences
print("\n3. Aligning sequences...")
alignment = gget.muscle("pcsk9_sequences.fasta")
print("Alignment completed. Visualizing in ClustalW format:")
print(alignment)
# Step 4: Get existing structures from PDB
print("\n4. Searching PDB for existing structures...")
# Search by sequence using BLAST
pdb_results = gget.blast(human_seq, database="pdbaa", limit=5)
print("Top PDB matches:")
print(pdb_results[["Description", "Max Score", "Query Coverage"]])
# Download top structure
if len(pdb_results) > 0:
# Extract PDB ID from description (usually format: "PDB|XXXX|...")
pdb_id = pdb_results.iloc[0]["Description"].split("|")[1]
print(f"\nDownloading PDB structure: {pdb_id}")
gget.pdb(pdb_id, save=True)
# Step 5: Predict AlphaFold structures
print("\n5. Predicting structures with AlphaFold...")
# Note: This requires gget setup alphafold and is computationally intensive
# Uncomment to run:
# human_structure = gget.alphafold(human_seq, plot=True)
# mouse_structure = gget.alphafold(mouse_seq, plot=True)
print("(AlphaFold prediction skipped - uncomment to run)")
# Step 6: Identify functional motifs
print("\n6. Identifying functional motifs with ELM...")
# Note: Requires gget setup elm
# Uncomment to run:
# human_ortholog_df, human_regex_df = gget.elm(human_seq)
# print("Human PCSK9 functional motifs:")
# print(human_regex_df)
print("(ELM analysis skipped - uncomment to run)")
# Step 7: Get orthology information
print("\n7. Getting orthology information from Bgee...")
orthologs = gget.bgee(human_gene, type="orthologs")
print("PCSK9 orthologs:")
print(orthologs)
print("\nComparative structural biology workflow completed!")
Cancer Genomics Analysis
Analyze cancer-associated genes and their mutations.
import gget
import matplotlib.pyplot as plt
print("Cancer Genomics Analysis Workflow")
print("=" * 50)
# Step 1: Search for cancer-related genes
print("\n1. Searching for breast cancer genes...")
genes = gget.search(["breast", "cancer", "BRCA"],
species="homo_sapiens",
andor="or",
limit=20)
print(f"Found {len(genes)} genes")
# Focus on specific genes
target_genes = ["BRCA1", "BRCA2", "TP53", "PIK3CA", "ESR1"]
print(f"\nAnalyzing: {', '.join(target_genes)}")
# Step 2: Get gene information
print("\n2. Getting gene information...")
gene_search = []
for gene in target_genes:
result = gget.search([gene], species="homo_sapiens", limit=1)
if len(result) > 0:
gene_search.append(result.iloc[0])
gene_df = pd.DataFrame(gene_search)
gene_ids = gene_df["ensembl_id"].tolist()
# Step 3: Get disease associations
print("\n3. Getting disease associations from OpenTargets...")
for gene_id, gene_name in zip(gene_ids, target_genes):
print(f"\n{gene_name} disease associations:")
diseases = gget.opentargets(gene_id, resource="diseases", limit=3)
print(diseases[["disease_name", "overall_score"]])
# Step 4: Get drug associations
print("\n4. Getting drug associations...")
for gene_id, gene_name in zip(gene_ids[:3], target_genes[:3]):
print(f"\n{gene_name} drug associations:")
drugs = gget.opentargets(gene_id, resource="drugs", limit=3)
if len(drugs) > 0:
print(drugs[["drug_name", "drug_type", "max_phase_for_all_diseases"]])
# Step 5: Search cBioPortal for studies
print("\n5. Searching cBioPortal for breast cancer studies...")
studies = gget.cbio_search(["breast", "cancer"])
print(f"Found {len(studies)} studies")
print(studies[:5])
# Step 6: Create cancer genomics heatmap
print("\n6. Creating cancer genomics heatmap...")
if len(studies) > 0:
# Select relevant studies
selected_studies = studies[:2] # Top 2 studies
gget.cbio_plot(
selected_studies,
target_genes,
stratification="cancer_type",
variation_type="mutation_occurrences",
show=False
)
print("Heatmap saved to ./gget_cbio_figures/")
# Step 7: Query COSMIC database (requires setup)
print("\n7. Querying COSMIC database...")
# Note: Requires COSMIC account and database download
# Uncomment to run:
# for gene in target_genes[:2]:
# cosmic_results = gget.cosmic(
# gene,
# cosmic_tsv_path="cosmic_cancer.tsv",
# limit=10
# )
# print(f"\n{gene} mutations in COSMIC:")
# print(cosmic_results)
print("(COSMIC query skipped - requires database download)")
# Step 8: Enrichment analysis
print("\n8. Performing pathway enrichment...")
enrichment = gget.enrichr(target_genes, database="pathway", plot=True)
print("\nTop enriched pathways:")
print(enrichment.head(10))
print("\nCancer genomics analysis completed!")
Single-Cell Expression Analysis
Analyze single-cell RNA-seq data for specific cell types and tissues.
import gget
import scanpy as sc
print("Single-Cell Expression Analysis Workflow")
print("=" * 50)
# Note: Requires gget setup cellxgene
# Step 1: Define genes and cell types of interest
genes_of_interest = ["ACE2", "TMPRSS2", "CD4", "CD8A"]
tissue = "lung"
cell_types = ["type ii pneumocyte", "macrophage", "t cell"]
print(f"\nAnalyzing genes: {', '.join(genes_of_interest)}")
print(f"Tissue: {tissue}")
print(f"Cell types: {', '.join(cell_types)}")
# Step 2: Get metadata first
print("\n1. Retrieving metadata...")
metadata = gget.cellxgene(
gene=genes_of_interest,
tissue=tissue,
species="homo_sapiens",
meta_only=True
)
print(f"Found {len(metadata)} datasets")
print(metadata.head())
# Step 3: Download count matrices
print("\n2. Downloading single-cell data...")
# Note: This can be a large download
adata = gget.cellxgene(
gene=genes_of_interest,
tissue=tissue,
species="homo_sapiens",
census_version="stable"
)
print(f"AnnData shape: {adata.shape}")
print(f"Genes: {adata.n_vars}")
print(f"Cells: {adata.n_obs}")
# Step 4: Basic QC and filtering with scanpy
print("\n3. Performing quality control...")
sc.pp.filter_cells(adata, min_genes=200)
sc.pp.filter_genes(adata, min_cells=3)
print(f"After QC - Cells: {adata.n_obs}, Genes: {adata.n_vars}")
# Step 5: Normalize and log-transform
print("\n4. Normalizing data...")
sc.pp.normalize_total(adata, target_sum=1e4)
sc.pp.log1p(adata)
# Step 6: Calculate gene expression statistics
print("\n5. Calculating expression statistics...")
for gene in genes_of_interest:
if gene in adata.var_names:
expr = adata[:, gene].X.toarray().flatten()
print(f"\n{gene} expression:")
print(f" Mean: {expr.mean():.3f}")
print(f" Median: {np.median(expr):.3f}")
print(f" % expressing: {(expr > 0).sum() / len(expr) * 100:.1f}%")
# Step 7: Get tissue expression from ARCHS4 for comparison
print("\n6. Getting bulk tissue expression from ARCHS4...")
for gene in genes_of_interest:
tissue_expr = gget.archs4(gene, which="tissue")
lung_expr = tissue_expr[tissue_expr["tissue"] == "lung"]
if len(lung_expr) > 0:
print(f"\n{gene} in lung (ARCHS4):")
print(f" Median: {lung_expr['median'].iloc[0]:.3f}")
# Step 8: Enrichment analysis
print("\n7. Performing enrichment analysis...")
enrichment = gget.enrichr(genes_of_interest, database="celltypes", plot=True)
print("\nTop cell type associations:")
print(enrichment.head(10))
# Step 9: Get disease associations
print("\n8. Getting disease associations...")
for gene in genes_of_interest:
gene_search = gget.search([gene], species="homo_sapiens", limit=1)
if len(gene_search) > 0:
gene_id = gene_search["ensembl_id"].iloc[0]
diseases = gget.opentargets(gene_id, resource="diseases", limit=3)
print(f"\n{gene} disease associations:")
print(diseases[["disease_name", "overall_score"]])
print("\nSingle-cell expression analysis completed!")
Building Reference Transcriptomes
Prepare reference data for RNA-seq analysis pipelines.
#!/bin/bash
# Reference transcriptome building workflow
echo "Reference Transcriptome Building Workflow"
echo "=========================================="
# Step 1: List available species
echo -e "\n1. Listing available species..."
gget ref --list_species > available_species.txt
echo "Available species saved to available_species.txt"
# Step 2: Download reference files for human
echo -e "\n2. Downloading human reference files..."
SPECIES="homo_sapiens"
RELEASE=110 # Specify release for reproducibility
# Download GTF annotation
echo "Downloading GTF annotation..."
gget ref -w gtf -r $RELEASE -d $SPECIES -o human_ref_gtf.json
# Download cDNA sequences
echo "Downloading cDNA sequences..."
gget ref -w cdna -r $RELEASE -d $SPECIES -o human_ref_cdna.json
# Download protein sequences
echo "Downloading protein sequences..."
gget ref -w pep -r $RELEASE -d $SPECIES -o human_ref_pep.json
# Step 3: Build kallisto index (if kallisto is installed)
echo -e "\n3. Building kallisto index..."
if command -v kallisto &> /dev/null; then
# Get cDNA FASTA file from download
CDNA_FILE=$(ls *.cdna.all.fa.gz)
if [ -f "$CDNA_FILE" ]; then
kallisto index -i transcriptome.idx $CDNA_FILE
echo "Kallisto index created: transcriptome.idx"
else
echo "cDNA FASTA file not found"
fi
else
echo "kallisto not installed, skipping index building"
fi
# Step 4: Download genome for alignment-based methods
echo -e "\n4. Downloading genome sequence..."
gget ref -w dna -r $RELEASE -d $SPECIES -o human_ref_dna.json
# Step 5: Get gene information for genes of interest
echo -e "\n5. Getting information for specific genes..."
gget search -s $SPECIES "TP53 BRCA1 BRCA2" -o key_genes.csv
echo -e "\nReference transcriptome building completed!"
# Python version
import gget
import json
print("Reference Transcriptome Building Workflow")
print("=" * 50)
# Configuration
species = "homo_sapiens"
release = 110
genes_of_interest = ["TP53", "BRCA1", "BRCA2", "MYC", "EGFR"]
# Step 1: Get reference information
print("\n1. Getting reference information...")
ref_info = gget.ref(species, release=release)
# Save reference information
with open("reference_info.json", "w") as f:
json.dump(ref_info, f, indent=2)
print("Reference information saved to reference_info.json")
# Step 2: Download specific files
print("\n2. Downloading reference files...")
# GTF annotation
gget.ref(species, which="gtf", release=release, download=True)
# cDNA sequences
gget.ref(species, which="cdna", release=release, download=True)
# Step 3: Get information for genes of interest
print(f"\n3. Getting information for {len(genes_of_interest)} genes...")
gene_data = []
for gene in genes_of_interest:
result = gget.search([gene], species=species, limit=1)
if len(result) > 0:
gene_data.append(result.iloc[0])
# Get detailed info
if gene_data:
gene_ids = [g["ensembl_id"] for g in gene_data]
detailed_info = gget.info(gene_ids)
detailed_info.to_csv("genes_of_interest_info.csv", index=False)
print("Gene information saved to genes_of_interest_info.csv")
# Step 4: Get sequences
print("\n4. Retrieving sequences...")
sequences_nt = gget.seq(gene_ids)
sequences_aa = gget.seq(gene_ids, translate=True)
with open("key_genes_nucleotide.fasta", "w") as f:
f.write(sequences_nt)
with open("key_genes_protein.fasta", "w") as f:
f.write(sequences_aa)
print("\nReference transcriptome building completed!")
print(f"Files created:")
print(" - reference_info.json")
print(" - genes_of_interest_info.csv")
print(" - key_genes_nucleotide.fasta")
print(" - key_genes_protein.fasta")
Mutation Impact Assessment
Analyze the impact of genetic mutations on protein structure and function.
import gget
import pandas as pd
print("Mutation Impact Assessment Workflow")
print("=" * 50)
# Define mutations to analyze
mutations = [
{"gene": "TP53", "mutation": "c.818G>A", "description": "R273H hotspot"},
{"gene": "EGFR", "mutation": "c.2573T>G", "description": "L858R activating"},
]
# Step 1: Get gene information
print("\n1. Getting gene information...")
for mut in mutations:
results = gget.search([mut["gene"]], species="homo_sapiens", limit=1)
if len(results) > 0:
mut["ensembl_id"] = results["ensembl_id"].iloc[0]
print(f"{mut['gene']}: {mut['ensembl_id']}")
# Step 2: Get sequences
print("\n2. Retrieving wild-type sequences...")
for mut in mutations:
# Get nucleotide sequence
nt_seq = gget.seq(mut["ensembl_id"])
mut["wt_sequence"] = nt_seq
# Get protein sequence
aa_seq = gget.seq(mut["ensembl_id"], translate=True)
mut["wt_protein"] = aa_seq
# Step 3: Generate mutated sequences
print("\n3. Generating mutated sequences...")
# Create mutation dataframe for gget mutate
mut_df = pd.DataFrame({
"seq_ID": [m["gene"] for m in mutations],
"mutation": [m["mutation"] for m in mutations]
})
# For each mutation
for mut in mutations:
# Extract sequence from FASTA
lines = mut["wt_sequence"].split("\n")
seq = "".join(lines[1:])
# Create single mutation df
single_mut = pd.DataFrame({
"seq_ID": [mut["gene"]],
"mutation": [mut["mutation"]]
})
# Generate mutated sequence
mutated = gget.mutate([seq], mutations=single_mut)
mut["mutated_sequence"] = mutated
print("Mutated sequences generated")
# Step 4: Get existing structure information
print("\n4. Getting structure information...")
for mut in mutations:
# Get info with PDB IDs
info = gget.info([mut["ensembl_id"]], pdb=True)
if "pdb_id" in info.columns and pd.notna(info["pdb_id"].iloc[0]):
pdb_ids = info["pdb_id"].iloc[0].split(";")
print(f"\n{mut['gene']} PDB structures: {', '.join(pdb_ids[:3])}")
# Download first structure
if len(pdb_ids) > 0:
pdb_id = pdb_ids[0].strip()
mut["pdb_id"] = pdb_id
gget.pdb(pdb_id, save=True)
else:
print(f"\n{mut['gene']}: No PDB structure available")
mut["pdb_id"] = None
# Step 5: Predict structures with AlphaFold (optional)
print("\n5. Predicting structures with AlphaFold...")
# Note: Requires gget setup alphafold and is computationally intensive
# Uncomment to run:
# for mut in mutations:
# print(f"Predicting {mut['gene']} wild-type structure...")
# wt_structure = gget.alphafold(mut["wt_protein"])
#
# print(f"Predicting {mut['gene']} mutant structure...")
# # Would need to translate mutated sequence first
# # mutant_structure = gget.alphafold(mutated_protein)
print("(AlphaFold prediction skipped - uncomment to run)")
# Step 6: Find functional motifs
print("\n6. Identifying functional motifs...")
# Note: Requires gget setup elm
# Uncomment to run:
# for mut in mutations:
# ortholog_df, regex_df = gget.elm(mut["wt_protein"])
# print(f"\n{mut['gene']} functional motifs:")
# print(regex_df)
print("(ELM analysis skipped - uncomment to run)")
# Step 7: Get disease associations
print("\n7. Getting disease associations...")
for mut in mutations:
diseases = gget.opentargets(
mut["ensembl_id"],
resource="diseases",
limit=5
)
print(f"\n{mut['gene']} ({mut['description']}) disease associations:")
print(diseases[["disease_name", "overall_score"]])
# Step 8: Query COSMIC for mutation frequency
print("\n8. Querying COSMIC database...")
# Note: Requires COSMIC database download
# Uncomment to run:
# for mut in mutations:
# cosmic_results = gget.cosmic(
# mut["mutation"],
# cosmic_tsv_path="cosmic_cancer.tsv",
# limit=10
# )
# print(f"\n{mut['gene']} {mut['mutation']} in COSMIC:")
# print(cosmic_results)
print("(COSMIC query skipped - requires database download)")
print("\nMutation impact assessment completed!")
Drug Target Discovery
Identify and validate potential drug targets for specific diseases.
import gget
import pandas as pd
print("Drug Target Discovery Workflow")
print("=" * 50)
# Step 1: Search for disease-related genes
disease = "alzheimer"
print(f"\n1. Searching for {disease} disease genes...")
genes = gget.search([disease], species="homo_sapiens", limit=50)
print(f"Found {len(genes)} potential genes")
# Step 2: Get detailed information
print("\n2. Getting detailed gene information...")
gene_ids = genes["ensembl_id"].tolist()[:20] # Top 20
gene_info = gget.info(gene_ids[:10]) # Limit to avoid timeout
# Step 3: Get disease associations from OpenTargets
print("\n3. Getting disease associations...")
disease_scores = []
for gene_id, gene_name in zip(gene_info["ensembl_id"], gene_info["gene_name"]):
diseases = gget.opentargets(gene_id, resource="diseases", limit=10)
# Filter for Alzheimer's disease
alzheimer = diseases[diseases["disease_name"].str.contains("Alzheimer", case=False, na=False)]
if len(alzheimer) > 0:
disease_scores.append({
"ensembl_id": gene_id,
"gene_name": gene_name,
"disease_score": alzheimer["overall_score"].max()
})
disease_df = pd.DataFrame(disease_scores).sort_values("disease_score", ascending=False)
print("\nTop disease-associated genes:")
print(disease_df.head(10))
# Step 4: Get tractability information
print("\n4. Assessing target tractability...")
top_targets = disease_df.head(5)
for _, row in top_targets.iterrows():
tractability = gget.opentargets(
row["ensembl_id"],
resource="tractability"
)
print(f"\n{row['gene_name']} tractability:")
print(tractability)
# Step 5: Get expression data
print("\n5. Getting tissue expression data...")
for _, row in top_targets.iterrows():
# Brain expression from OpenTargets
expression = gget.opentargets(
row["ensembl_id"],
resource="expression",
filter_tissue="brain"
)
print(f"\n{row['gene_name']} brain expression:")
print(expression)
# Tissue expression from ARCHS4
tissue_expr = gget.archs4(row["gene_name"], which="tissue")
brain_expr = tissue_expr[tissue_expr["tissue"].str.contains("brain", case=False, na=False)]
print(f"ARCHS4 brain expression:")
print(brain_expr)
# Step 6: Check for existing drugs
print("\n6. Checking for existing drugs...")
for _, row in top_targets.iterrows():
drugs = gget.opentargets(row["ensembl_id"], resource="drugs", limit=5)
print(f"\n{row['gene_name']} drug associations:")
if len(drugs) > 0:
print(drugs[["drug_name", "drug_type", "max_phase_for_all_diseases"]])
else:
print("No drugs found")
# Step 7: Get protein-protein interactions
print("\n7. Getting protein-protein interactions...")
for _, row in top_targets.iterrows():
interactions = gget.opentargets(
row["ensembl_id"],
resource="interactions",
limit=10
)
print(f"\n{row['gene_name']} interacts with:")
if len(interactions) > 0:
print(interactions[["gene_b_symbol", "interaction_score"]])
# Step 8: Enrichment analysis
print("\n8. Performing pathway enrichment...")
gene_list = top_targets["gene_name"].tolist()
enrichment = gget.enrichr(gene_list, database="pathway", plot=True)
print("\nTop enriched pathways:")
print(enrichment.head(10))
# Step 9: Get structure information
print("\n9. Getting structure information...")
for _, row in top_targets.iterrows():
info = gget.info([row["ensembl_id"]], pdb=True)
if "pdb_id" in info.columns and pd.notna(info["pdb_id"].iloc[0]):
pdb_ids = info["pdb_id"].iloc[0].split(";")
print(f"\n{row['gene_name']} PDB structures: {', '.join(pdb_ids[:3])}")
else:
print(f"\n{row['gene_name']}: No PDB structure available")
# Could predict with AlphaFold
print(f" Consider AlphaFold prediction")
# Step 10: Generate target summary report
print("\n10. Generating target summary report...")
report = []
for _, row in top_targets.iterrows():
report.append({
"Gene": row["gene_name"],
"Ensembl ID": row["ensembl_id"],
"Disease Score": row["disease_score"],
"Target Status": "High Priority"
})
report_df = pd.DataFrame(report)
report_df.to_csv("drug_targets_report.csv", index=False)
print("\nTarget report saved to drug_targets_report.csv")
print("\nDrug target discovery workflow completed!")
Tips for Workflow Development
Error Handling
import gget
def safe_gget_call(func, *args, **kwargs):
"""Wrapper for gget calls with error handling"""
try:
result = func(*args, **kwargs)
return result
except Exception as e:
print(f"Error in {func.__name__}: {str(e)}")
return None
# Usage
result = safe_gget_call(gget.search, ["ACE2"], species="homo_sapiens")
if result is not None:
print(result)
Rate Limiting
import time
import gget
def rate_limited_queries(gene_ids, delay=1):
"""Query multiple genes with rate limiting"""
results = []
for i, gene_id in enumerate(gene_ids):
print(f"Querying {i+1}/{len(gene_ids)}: {gene_id}")
result = gget.info([gene_id])
results.append(result)
if i < len(gene_ids) - 1: # Don't sleep after last query
time.sleep(delay)
return pd.concat(results, ignore_index=True)
Caching Results
import os
import pickle
import gget
def cached_gget(cache_file, func, *args, **kwargs):
"""Cache gget results to avoid repeated queries"""
if os.path.exists(cache_file):
print(f"Loading from cache: {cache_file}")
with open(cache_file, "rb") as f:
return pickle.load(f)
result = func(*args, **kwargs)
with open(cache_file, "wb") as f:
pickle.dump(result, f)
print(f"Saved to cache: {cache_file}")
return result
# Usage
result = cached_gget("ace2_info.pkl", gget.info, ["ENSG00000130234"])
These workflows demonstrate how to combine multiple gget modules for comprehensive bioinformatics analyses. Adapt them to your specific research questions and data types.