284 lines
5.9 KiB
Markdown
284 lines
5.9 KiB
Markdown
# Output and Analysis
|
|
|
|
## Output Types
|
|
|
|
FluidSim automatically saves several types of output during simulations.
|
|
|
|
### Physical Fields
|
|
|
|
**File format**: HDF5 (`.h5`)
|
|
|
|
**Location**: `simulation_dir/state_phys_t*.h5`
|
|
|
|
**Contents**: Velocity, vorticity, and other physical space fields at specific times
|
|
|
|
**Access**:
|
|
```python
|
|
sim.output.phys_fields.plot()
|
|
sim.output.phys_fields.plot("vorticity")
|
|
sim.output.phys_fields.plot("vx")
|
|
sim.output.phys_fields.plot("div") # check divergence
|
|
|
|
# Save manually
|
|
sim.output.phys_fields.save()
|
|
|
|
# Get data
|
|
vorticity = sim.state.state_phys.get_var("rot")
|
|
```
|
|
|
|
### Spatial Means
|
|
|
|
**File format**: Text file (`.txt`)
|
|
|
|
**Location**: `simulation_dir/spatial_means.txt`
|
|
|
|
**Contents**: Volume-averaged quantities vs time (energy, enstrophy, etc.)
|
|
|
|
**Access**:
|
|
```python
|
|
sim.output.spatial_means.plot()
|
|
|
|
# Load from file
|
|
from fluidsim import load_sim_for_plot
|
|
sim = load_sim_for_plot("simulation_dir")
|
|
sim.output.spatial_means.load()
|
|
spatial_means_data = sim.output.spatial_means
|
|
```
|
|
|
|
### Spectra
|
|
|
|
**File format**: HDF5 (`.h5`)
|
|
|
|
**Location**: `simulation_dir/spectra_*.h5`
|
|
|
|
**Contents**: Energy and enstrophy spectra vs wavenumber
|
|
|
|
**Access**:
|
|
```python
|
|
sim.output.spectra.plot1d() # 1D spectrum
|
|
sim.output.spectra.plot2d() # 2D spectrum
|
|
|
|
# Load spectra data
|
|
spectra = sim.output.spectra.load2d_mean()
|
|
```
|
|
|
|
### Spectral Energy Budget
|
|
|
|
**File format**: HDF5 (`.h5`)
|
|
|
|
**Location**: `simulation_dir/spect_energy_budg_*.h5`
|
|
|
|
**Contents**: Energy transfer between scales
|
|
|
|
**Access**:
|
|
```python
|
|
sim.output.spect_energy_budg.plot()
|
|
```
|
|
|
|
## Post-Processing
|
|
|
|
### Loading Simulations for Analysis
|
|
|
|
#### Fast Loading (Read-Only)
|
|
|
|
```python
|
|
from fluidsim import load_sim_for_plot
|
|
|
|
sim = load_sim_for_plot("simulation_dir")
|
|
|
|
# Access all output types
|
|
sim.output.phys_fields.plot()
|
|
sim.output.spatial_means.plot()
|
|
sim.output.spectra.plot1d()
|
|
```
|
|
|
|
Use this for quick visualization and analysis. Does not initialize full simulation state.
|
|
|
|
#### Full State Loading
|
|
|
|
```python
|
|
from fluidsim import load_state_phys_file
|
|
|
|
sim = load_state_phys_file("simulation_dir/state_phys_t10.000.h5")
|
|
|
|
# Can continue simulation
|
|
sim.time_stepping.start()
|
|
```
|
|
|
|
### Visualization Tools
|
|
|
|
#### Built-in Plotting
|
|
|
|
FluidSim provides basic plotting through matplotlib:
|
|
|
|
```python
|
|
# Physical fields
|
|
sim.output.phys_fields.plot("vorticity")
|
|
sim.output.phys_fields.animate("vorticity")
|
|
|
|
# Time series
|
|
sim.output.spatial_means.plot()
|
|
|
|
# Spectra
|
|
sim.output.spectra.plot1d()
|
|
```
|
|
|
|
#### Advanced Visualization
|
|
|
|
For publication-quality or 3D visualization:
|
|
|
|
**ParaView**: Open `.h5` files directly
|
|
```bash
|
|
paraview simulation_dir/state_phys_t*.h5
|
|
```
|
|
|
|
**VisIt**: Similar to ParaView for large datasets
|
|
|
|
**Custom Python**:
|
|
```python
|
|
import h5py
|
|
import matplotlib.pyplot as plt
|
|
|
|
# Load field manually
|
|
with h5py.File("state_phys_t10.000.h5", "r") as f:
|
|
vx = f["state_phys"]["vx"][:]
|
|
vy = f["state_phys"]["vy"][:]
|
|
|
|
# Custom plotting
|
|
plt.contourf(vx)
|
|
plt.show()
|
|
```
|
|
|
|
## Analysis Examples
|
|
|
|
### Energy Evolution
|
|
|
|
```python
|
|
from fluidsim import load_sim_for_plot
|
|
import matplotlib.pyplot as plt
|
|
|
|
sim = load_sim_for_plot("simulation_dir")
|
|
df = sim.output.spatial_means.load()
|
|
|
|
plt.figure()
|
|
plt.plot(df["t"], df["E"], label="Kinetic Energy")
|
|
plt.xlabel("Time")
|
|
plt.ylabel("Energy")
|
|
plt.legend()
|
|
plt.show()
|
|
```
|
|
|
|
### Spectral Analysis
|
|
|
|
```python
|
|
sim = load_sim_for_plot("simulation_dir")
|
|
|
|
# Plot energy spectrum
|
|
sim.output.spectra.plot1d(tmin=5.0, tmax=10.0) # average over time range
|
|
|
|
# Get spectral data
|
|
k, E_k = sim.output.spectra.load1d_mean(tmin=5.0, tmax=10.0)
|
|
|
|
# Check for power law
|
|
import numpy as np
|
|
log_k = np.log(k)
|
|
log_E = np.log(E_k)
|
|
# fit power law in inertial range
|
|
```
|
|
|
|
### Parametric Study Analysis
|
|
|
|
When running multiple simulations with different parameters:
|
|
|
|
```python
|
|
import os
|
|
import pandas as pd
|
|
from fluidsim import load_sim_for_plot
|
|
|
|
# Collect results from multiple simulations
|
|
results = []
|
|
for sim_dir in os.listdir("simulations"):
|
|
if not os.path.isdir(f"simulations/{sim_dir}"):
|
|
continue
|
|
|
|
sim = load_sim_for_plot(f"simulations/{sim_dir}")
|
|
|
|
# Extract key metrics
|
|
df = sim.output.spatial_means.load()
|
|
final_energy = df["E"].iloc[-1]
|
|
|
|
# Get parameters
|
|
nu = sim.params.nu_2
|
|
|
|
results.append({
|
|
"nu": nu,
|
|
"final_energy": final_energy,
|
|
"sim_dir": sim_dir
|
|
})
|
|
|
|
# Analyze results
|
|
results_df = pd.DataFrame(results)
|
|
results_df.plot(x="nu", y="final_energy", logx=True)
|
|
```
|
|
|
|
### Field Manipulation
|
|
|
|
```python
|
|
sim = load_sim_for_plot("simulation_dir")
|
|
|
|
# Load specific time
|
|
sim.output.phys_fields.set_of_phys_files.update_times()
|
|
times = sim.output.phys_fields.set_of_phys_files.times
|
|
|
|
# Load field at specific time
|
|
field_file = sim.output.phys_fields.get_field_to_plot(time=5.0)
|
|
vorticity = field_file.get_var("rot")
|
|
|
|
# Compute derived quantities
|
|
import numpy as np
|
|
vorticity_rms = np.sqrt(np.mean(vorticity**2))
|
|
vorticity_max = np.max(np.abs(vorticity))
|
|
```
|
|
|
|
## Output Directory Structure
|
|
|
|
```
|
|
simulation_dir/
|
|
├── params_simul.xml # Simulation parameters
|
|
├── stdout.txt # Standard output log
|
|
├── state_phys_t*.h5 # Physical fields at different times
|
|
├── spatial_means.txt # Time series of spatial averages
|
|
├── spectra_*.h5 # Spectral data
|
|
├── spect_energy_budg_*.h5 # Energy budget data
|
|
└── info_solver.txt # Solver information
|
|
```
|
|
|
|
## Performance Monitoring
|
|
|
|
```python
|
|
# During simulation, check progress
|
|
sim.output.print_stdout.complete_timestep()
|
|
|
|
# After simulation, review performance
|
|
sim.output.print_stdout.plot_deltat() # plot time step evolution
|
|
sim.output.print_stdout.plot_clock_times() # plot computation time
|
|
```
|
|
|
|
## Data Export
|
|
|
|
Convert fluidsim output to other formats:
|
|
|
|
```python
|
|
import h5py
|
|
import numpy as np
|
|
|
|
# Export to numpy array
|
|
with h5py.File("state_phys_t10.000.h5", "r") as f:
|
|
vx = f["state_phys"]["vx"][:]
|
|
np.save("vx.npy", vx)
|
|
|
|
# Export to CSV
|
|
df = sim.output.spatial_means.load()
|
|
df.to_csv("spatial_means.csv", index=False)
|
|
```
|