Files
gh-k-dense-ai-claude-scient…/skills/fluidsim/references/output_analysis.md
2025-11-30 08:30:10 +08:00

284 lines
5.9 KiB
Markdown

# Output and Analysis
## Output Types
FluidSim automatically saves several types of output during simulations.
### Physical Fields
**File format**: HDF5 (`.h5`)
**Location**: `simulation_dir/state_phys_t*.h5`
**Contents**: Velocity, vorticity, and other physical space fields at specific times
**Access**:
```python
sim.output.phys_fields.plot()
sim.output.phys_fields.plot("vorticity")
sim.output.phys_fields.plot("vx")
sim.output.phys_fields.plot("div") # check divergence
# Save manually
sim.output.phys_fields.save()
# Get data
vorticity = sim.state.state_phys.get_var("rot")
```
### Spatial Means
**File format**: Text file (`.txt`)
**Location**: `simulation_dir/spatial_means.txt`
**Contents**: Volume-averaged quantities vs time (energy, enstrophy, etc.)
**Access**:
```python
sim.output.spatial_means.plot()
# Load from file
from fluidsim import load_sim_for_plot
sim = load_sim_for_plot("simulation_dir")
sim.output.spatial_means.load()
spatial_means_data = sim.output.spatial_means
```
### Spectra
**File format**: HDF5 (`.h5`)
**Location**: `simulation_dir/spectra_*.h5`
**Contents**: Energy and enstrophy spectra vs wavenumber
**Access**:
```python
sim.output.spectra.plot1d() # 1D spectrum
sim.output.spectra.plot2d() # 2D spectrum
# Load spectra data
spectra = sim.output.spectra.load2d_mean()
```
### Spectral Energy Budget
**File format**: HDF5 (`.h5`)
**Location**: `simulation_dir/spect_energy_budg_*.h5`
**Contents**: Energy transfer between scales
**Access**:
```python
sim.output.spect_energy_budg.plot()
```
## Post-Processing
### Loading Simulations for Analysis
#### Fast Loading (Read-Only)
```python
from fluidsim import load_sim_for_plot
sim = load_sim_for_plot("simulation_dir")
# Access all output types
sim.output.phys_fields.plot()
sim.output.spatial_means.plot()
sim.output.spectra.plot1d()
```
Use this for quick visualization and analysis. Does not initialize full simulation state.
#### Full State Loading
```python
from fluidsim import load_state_phys_file
sim = load_state_phys_file("simulation_dir/state_phys_t10.000.h5")
# Can continue simulation
sim.time_stepping.start()
```
### Visualization Tools
#### Built-in Plotting
FluidSim provides basic plotting through matplotlib:
```python
# Physical fields
sim.output.phys_fields.plot("vorticity")
sim.output.phys_fields.animate("vorticity")
# Time series
sim.output.spatial_means.plot()
# Spectra
sim.output.spectra.plot1d()
```
#### Advanced Visualization
For publication-quality or 3D visualization:
**ParaView**: Open `.h5` files directly
```bash
paraview simulation_dir/state_phys_t*.h5
```
**VisIt**: Similar to ParaView for large datasets
**Custom Python**:
```python
import h5py
import matplotlib.pyplot as plt
# Load field manually
with h5py.File("state_phys_t10.000.h5", "r") as f:
vx = f["state_phys"]["vx"][:]
vy = f["state_phys"]["vy"][:]
# Custom plotting
plt.contourf(vx)
plt.show()
```
## Analysis Examples
### Energy Evolution
```python
from fluidsim import load_sim_for_plot
import matplotlib.pyplot as plt
sim = load_sim_for_plot("simulation_dir")
df = sim.output.spatial_means.load()
plt.figure()
plt.plot(df["t"], df["E"], label="Kinetic Energy")
plt.xlabel("Time")
plt.ylabel("Energy")
plt.legend()
plt.show()
```
### Spectral Analysis
```python
sim = load_sim_for_plot("simulation_dir")
# Plot energy spectrum
sim.output.spectra.plot1d(tmin=5.0, tmax=10.0) # average over time range
# Get spectral data
k, E_k = sim.output.spectra.load1d_mean(tmin=5.0, tmax=10.0)
# Check for power law
import numpy as np
log_k = np.log(k)
log_E = np.log(E_k)
# fit power law in inertial range
```
### Parametric Study Analysis
When running multiple simulations with different parameters:
```python
import os
import pandas as pd
from fluidsim import load_sim_for_plot
# Collect results from multiple simulations
results = []
for sim_dir in os.listdir("simulations"):
if not os.path.isdir(f"simulations/{sim_dir}"):
continue
sim = load_sim_for_plot(f"simulations/{sim_dir}")
# Extract key metrics
df = sim.output.spatial_means.load()
final_energy = df["E"].iloc[-1]
# Get parameters
nu = sim.params.nu_2
results.append({
"nu": nu,
"final_energy": final_energy,
"sim_dir": sim_dir
})
# Analyze results
results_df = pd.DataFrame(results)
results_df.plot(x="nu", y="final_energy", logx=True)
```
### Field Manipulation
```python
sim = load_sim_for_plot("simulation_dir")
# Load specific time
sim.output.phys_fields.set_of_phys_files.update_times()
times = sim.output.phys_fields.set_of_phys_files.times
# Load field at specific time
field_file = sim.output.phys_fields.get_field_to_plot(time=5.0)
vorticity = field_file.get_var("rot")
# Compute derived quantities
import numpy as np
vorticity_rms = np.sqrt(np.mean(vorticity**2))
vorticity_max = np.max(np.abs(vorticity))
```
## Output Directory Structure
```
simulation_dir/
├── params_simul.xml # Simulation parameters
├── stdout.txt # Standard output log
├── state_phys_t*.h5 # Physical fields at different times
├── spatial_means.txt # Time series of spatial averages
├── spectra_*.h5 # Spectral data
├── spect_energy_budg_*.h5 # Energy budget data
└── info_solver.txt # Solver information
```
## Performance Monitoring
```python
# During simulation, check progress
sim.output.print_stdout.complete_timestep()
# After simulation, review performance
sim.output.print_stdout.plot_deltat() # plot time step evolution
sim.output.print_stdout.plot_clock_times() # plot computation time
```
## Data Export
Convert fluidsim output to other formats:
```python
import h5py
import numpy as np
# Export to numpy array
with h5py.File("state_phys_t10.000.h5", "r") as f:
vx = f["state_phys"]["vx"][:]
np.save("vx.npy", vx)
# Export to CSV
df = sim.output.spatial_means.load()
df.to_csv("spatial_means.csv", index=False)
```