12 KiB
12 KiB
ETE Toolkit API Reference
Overview
ETE (Environment for Tree Exploration) is a Python toolkit for phylogenetic tree manipulation, analysis, and visualization. This reference covers the main classes and methods.
Core Classes
TreeNode (alias: Tree)
The fundamental class representing tree structures with hierarchical node organization.
Constructor:
from ete3 import Tree
t = Tree(newick=None, format=0, dist=None, support=None, name=None)
Parameters:
newick: Newick string or file pathformat: Newick format (0-100). Common formats:0: Flexible format with branch lengths and names1: With internal node names2: With bootstrap/support values5: Internal node names and branch lengths8: All features (names, distances, support)9: Leaf names only100: Topology only
dist: Branch length to parent (default: 1.0)support: Bootstrap/confidence value (default: 1.0)name: Node identifier
PhyloTree
Specialized class for phylogenetic analysis, extending TreeNode.
Constructor:
from ete3 import PhyloTree
t = PhyloTree(newick=None, alignment=None, alg_format='fasta',
sp_naming_function=None, format=0)
Additional Parameters:
alignment: Path to alignment file or alignment stringalg_format: 'fasta' or 'phylip'sp_naming_function: Custom function to extract species from node names
ClusterTree
Class for hierarchical clustering analysis.
Constructor:
from ete3 import ClusterTree
t = ClusterTree(newick, text_array=None)
Parameters:
text_array: Tab-delimited matrix with column headers and row names
NCBITaxa
Class for NCBI taxonomy database operations.
Constructor:
from ete3 import NCBITaxa
ncbi = NCBITaxa(dbfile=None)
First instantiation downloads ~300MB NCBI taxonomy database to ~/.etetoolkit/taxa.sqlite.
Node Properties
Basic Attributes
| Property | Type | Description | Default |
|---|---|---|---|
name |
str | Node identifier | "NoName" |
dist |
float | Branch length to parent | 1.0 |
support |
float | Bootstrap/confidence value | 1.0 |
up |
TreeNode | Parent node reference | None |
children |
list | Child nodes | [] |
Custom Features
Add any custom data to nodes:
node.add_feature("custom_name", value)
node.add_features(feature1=value1, feature2=value2)
Access features:
value = node.custom_name
# or
value = getattr(node, "custom_name", default_value)
Navigation & Traversal
Basic Navigation
# Check node type
node.is_leaf() # Returns True if terminal node
node.is_root() # Returns True if root node
len(node) # Number of leaves under node
# Get relatives
parent = node.up
children = node.children
root = node.get_tree_root()
Traversal Strategies
# Three traversal strategies
for node in tree.traverse("preorder"): # Root → Left → Right
print(node.name)
for node in tree.traverse("postorder"): # Left → Right → Root
print(node.name)
for node in tree.traverse("levelorder"): # Level by level
print(node.name)
# Exclude root
for node in tree.iter_descendants("postorder"):
print(node.name)
Getting Nodes
# Get all leaves
leaves = tree.get_leaves()
for leaf in tree: # Shortcut iteration
print(leaf.name)
# Get all descendants
descendants = tree.get_descendants()
# Get ancestors
ancestors = node.get_ancestors()
# Get specific nodes by attribute
nodes = tree.search_nodes(name="NodeA")
node = tree & "NodeA" # Shortcut syntax
# Get leaves by name
leaves = tree.get_leaves_by_name("LeafA")
# Get common ancestor
ancestor = tree.get_common_ancestor("LeafA", "LeafB", "LeafC")
# Custom filtering
filtered = [n for n in tree.traverse() if n.dist > 0.5 and n.is_leaf()]
Iterator Methods (Memory Efficient)
# For large trees, use iterators
for match in tree.iter_search_nodes(name="X"):
if some_condition:
break # Stop early
for leaf in tree.iter_leaves():
process(leaf)
for descendant in node.iter_descendants():
process(descendant)
Tree Construction & Modification
Creating Trees from Scratch
# Empty tree
t = Tree()
# Add children
child1 = t.add_child(name="A", dist=1.0)
child2 = t.add_child(name="B", dist=2.0)
# Add siblings
sister = child1.add_sister(name="C", dist=1.5)
# Populate with random topology
t.populate(10) # Creates 10 random leaves
t.populate(5, names_library=["A", "B", "C", "D", "E"])
Removing & Deleting Nodes
# Detach: removes entire subtree
node.detach()
# or
parent.remove_child(node)
# Delete: removes node, reconnects children to parent
node.delete()
# or
parent.remove_child(node)
Pruning
Keep only specified leaves:
# Keep only these leaves, remove all others
tree.prune(["A", "B", "C"])
# Preserve original branch lengths
tree.prune(["A", "B", "C"], preserve_branch_length=True)
Tree Concatenation
# Attach one tree as child of another
t1 = Tree("(A,(B,C));")
t2 = Tree("((D,E),(F,G));")
A = t1 & "A"
A.add_child(t2)
Tree Copying
# Four copy methods
copy1 = tree.copy() # Default: cpickle (preserves types)
copy2 = tree.copy("newick") # Fastest: basic topology
copy3 = tree.copy("newick-extended") # Includes custom features as text
copy4 = tree.copy("deepcopy") # Slowest: handles complex objects
Tree Operations
Rooting
# Set outgroup (reroot tree)
outgroup_node = tree & "OutgroupLeaf"
tree.set_outgroup(outgroup_node)
# Midpoint rooting
midpoint = tree.get_midpoint_outgroup()
tree.set_outgroup(midpoint)
# Unroot tree
tree.unroot()
Resolving Polytomies
# Resolve multifurcations to bifurcations
tree.resolve_polytomy(recursive=False) # Single node only
tree.resolve_polytomy(recursive=True) # Entire tree
Ladderize
# Sort branches by size
tree.ladderize()
tree.ladderize(direction=1) # Ascending order
Convert to Ultrametric
# Make all leaves equidistant from root
tree.convert_to_ultrametric()
tree.convert_to_ultrametric(tree_length=100) # Specific total length
Distance & Comparison
Distance Calculations
# Branch length distance between nodes
dist = tree.get_distance("A", "B")
dist = nodeA.get_distance(nodeB)
# Topology-only distance (count nodes)
dist = tree.get_distance("A", "B", topology_only=True)
# Farthest node
farthest, distance = node.get_farthest_node()
farthest_leaf, distance = node.get_farthest_leaf()
Monophyly Testing
# Check if values form monophyletic group
is_mono, clade_type, base_node = tree.check_monophyly(
values=["A", "B", "C"],
target_attr="name"
)
# Returns: (bool, "monophyletic"|"paraphyletic"|"polyphyletic", node)
# Get all monophyletic clades
monophyletic_nodes = tree.get_monophyletic(
values=["A", "B", "C"],
target_attr="name"
)
Tree Comparison
# Robinson-Foulds distance
rf, max_rf, common_leaves, parts_t1, parts_t2 = t1.robinson_foulds(t2)
print(f"RF distance: {rf}/{max_rf}")
# Normalized RF distance
result = t1.compare(t2)
norm_rf = result["norm_rf"] # 0.0 to 1.0
ref_edges = result["ref_edges_in_source"]
Input/Output
Reading Trees
# From string
t = Tree("(A:1,(B:1,(C:1,D:1):0.5):0.5);")
# From file
t = Tree("tree.nw")
# With format
t = Tree("tree.nw", format=1)
Writing Trees
# To string
newick = tree.write()
newick = tree.write(format=1)
newick = tree.write(format=1, features=["support", "custom_feature"])
# To file
tree.write(outfile="output.nw")
tree.write(format=5, outfile="output.nw", features=["name", "dist"])
# Custom leaf function (for collapsing)
def is_leaf(node):
return len(node) <= 3 # Treat small clades as leaves
newick = tree.write(is_leaf_fn=is_leaf)
Tree Rendering
# Show interactive GUI
tree.show()
# Render to file (PNG, PDF, SVG)
tree.render("tree.png")
tree.render("tree.pdf", w=200, units="mm")
tree.render("tree.svg", dpi=300)
# ASCII representation
print(tree)
print(tree.get_ascii(show_internal=True, compact=False))
Performance Optimization
Caching Content
For frequent access to node contents:
# Cache all node contents
node2content = tree.get_cached_content()
# Fast lookup
for node in tree.traverse():
leaves = node2content[node]
print(f"Node has {len(leaves)} leaves")
Precomputing Distances
# For multiple distance queries
node2dist = {}
for node in tree.traverse():
node2dist[node] = node.get_distance(tree)
PhyloTree-Specific Methods
Sequence Alignment
# Link alignment
tree.link_to_alignment("alignment.fasta", alg_format="fasta")
# Access sequences
for leaf in tree:
print(f"{leaf.name}: {leaf.sequence}")
Species Naming
# Default: first 3 letters
# Custom function
def get_species(node_name):
return node_name.split("_")[0]
tree.set_species_naming_function(get_species)
# Manual setting
for leaf in tree:
leaf.species = extract_species(leaf.name)
Evolutionary Events
# Detect duplication/speciation events
events = tree.get_descendant_evol_events()
for node in tree.traverse():
if hasattr(node, "evoltype"):
print(f"{node.name}: {node.evoltype}") # "D" or "S"
# With species tree
species_tree = Tree("(human, (chimp, gorilla));")
events = tree.get_descendant_evol_events(species_tree=species_tree)
Gene Tree Operations
# Get species trees from duplicated gene families
species_trees = tree.get_speciation_trees()
# Split by duplication events
subtrees = tree.split_by_dups()
# Collapse lineage-specific expansions
tree.collapse_lineage_specific_expansions()
NCBITaxa Methods
Database Operations
from ete3 import NCBITaxa
ncbi = NCBITaxa()
# Update database
ncbi.update_taxonomy_database()
Querying Taxonomy
# Get taxid from name
taxid = ncbi.get_name_translator(["Homo sapiens"])
# Returns: {'Homo sapiens': [9606]}
# Get name from taxid
names = ncbi.get_taxid_translator([9606, 9598])
# Returns: {9606: 'Homo sapiens', 9598: 'Pan troglodytes'}
# Get rank
rank = ncbi.get_rank([9606])
# Returns: {9606: 'species'}
# Get lineage
lineage = ncbi.get_lineage(9606)
# Returns: [1, 131567, 2759, ..., 9606]
# Get descendants
descendants = ncbi.get_descendant_taxa("Primates")
descendants = ncbi.get_descendant_taxa("Primates", collapse_subspecies=True)
Building Taxonomy Trees
# Get minimal tree connecting taxa
tree = ncbi.get_topology([9606, 9598, 9593]) # Human, chimp, gorilla
# Annotate tree with taxonomy
tree.annotate_ncbi_taxa()
# Access taxonomy info
for node in tree.traverse():
print(f"{node.sci_name} ({node.taxid}) - Rank: {node.rank}")
ClusterTree Methods
Linking to Data
# Link matrix to tree
tree.link_to_arraytable(matrix_string)
# Access profiles
for leaf in tree:
print(leaf.profile) # Numerical array
Cluster Metrics
# Get silhouette coefficient
silhouette = tree.get_silhouette()
# Get Dunn index
dunn = tree.get_dunn()
# Inter/intra cluster distances
inter = node.intercluster_dist
intra = node.intracluster_dist
# Standard deviation
dev = node.deviation
Distance Metrics
Supported metrics:
"euclidean": Euclidean distance"pearson": Pearson correlation"spearman": Spearman rank correlation
tree.dist_to(node2, metric="pearson")
Common Error Handling
# Check if tree is empty
if tree.children:
print("Tree has children")
# Check if node exists
nodes = tree.search_nodes(name="X")
if nodes:
node = nodes[0]
# Safe feature access
value = getattr(node, "feature_name", default_value)
# Check format compatibility
try:
tree.write(format=1)
except:
print("Tree lacks internal node names")
Best Practices
- Use appropriate traversal: Postorder for bottom-up, preorder for top-down
- Cache for repeated access: Use
get_cached_content()for frequent queries - Use iterators for large trees: Memory-efficient processing
- Preserve branch lengths: Use
preserve_branch_length=Truewhen pruning - Choose copy method wisely: "newick" for speed, "cpickle" for full fidelity
- Validate monophyly: Check returned clade type (monophyletic/paraphyletic/polyphyletic)
- Use PhyloTree for phylogenetics: Specialized methods for evolutionary analysis
- Cache NCBI queries: Store results to avoid repeated database access