Files
gh-k-dense-ai-claude-scient…/skills/denario/references/llm_configuration.md
2025-11-30 08:30:10 +08:00

266 lines
6.6 KiB
Markdown

# LLM API Configuration
## Overview
Denario requires API credentials from supported LLM providers to power its multiagent research system. The system is built on AG2 and LangGraph, which support multiple LLM backends.
## Supported LLM Providers
### Google Vertex AI
- Full integration with Google's Vertex AI platform
- Supports Gemini and PaLM models
- Requires Google Cloud project setup
### OpenAI
- GPT-4, GPT-3.5, and other OpenAI models
- Direct API integration
### Other Providers
- Any LLM compatible with AG2/LangGraph frameworks
- Anthropic Claude (via compatible interfaces)
- Azure OpenAI
- Custom model endpoints
## Obtaining API Keys
### Google Vertex AI
1. **Create Google Cloud Project**
- Navigate to [Google Cloud Console](https://console.cloud.google.com/)
- Create a new project or select existing
2. **Enable Vertex AI API**
- Go to "APIs & Services" → "Library"
- Search for "Vertex AI API"
- Click "Enable"
3. **Create Service Account**
- Navigate to "IAM & Admin" → "Service Accounts"
- Create service account with Vertex AI permissions
- Download JSON key file
4. **Set up authentication**
```bash
export GOOGLE_APPLICATION_CREDENTIALS="/path/to/service-account-key.json"
```
### OpenAI
1. **Create OpenAI Account**
- Visit [platform.openai.com](https://platform.openai.com/)
- Sign up or log in
2. **Generate API Key**
- Navigate to API Keys section
- Click "Create new secret key"
- Copy and store securely
3. **Set environment variable**
```bash
export OPENAI_API_KEY="sk-..."
```
## Storing API Keys
### Method 1: Environment Variables (Recommended)
**Linux/macOS:**
```bash
export OPENAI_API_KEY="your-key-here"
export GOOGLE_APPLICATION_CREDENTIALS="/path/to/credentials.json"
```
Add to `~/.bashrc`, `~/.zshrc`, or `~/.bash_profile` for persistence.
**Windows:**
```bash
set OPENAI_API_KEY=your-key-here
```
Or use System Properties → Environment Variables for persistence.
### Method 2: .env Files
Create a `.env` file in your project directory:
```env
# OpenAI Configuration
OPENAI_API_KEY=sk-your-openai-key-here
OPENAI_MODEL=gpt-4
# Google Vertex AI Configuration
GOOGLE_APPLICATION_CREDENTIALS=/path/to/service-account.json
GOOGLE_CLOUD_PROJECT=your-project-id
# Optional: Model preferences
DEFAULT_MODEL=gpt-4
TEMPERATURE=0.7
```
Load the environment file in Python:
```python
from dotenv import load_dotenv
load_dotenv()
from denario import Denario
den = Denario(project_dir="./project")
```
### Method 3: Docker Environment Files
For Docker deployments, pass environment variables:
```bash
# Using --env-file flag
docker run -p 8501:8501 --env-file .env --rm pablovd/denario:latest
# Using -e flag for individual variables
docker run -p 8501:8501 \
-e OPENAI_API_KEY=sk-... \
-e GOOGLE_APPLICATION_CREDENTIALS=/credentials.json \
-v /local/path/to/creds.json:/credentials.json \
--rm pablovd/denario:latest
```
## Vertex AI Detailed Setup
### Prerequisites
- Google Cloud account with billing enabled
- gcloud CLI installed (optional but recommended)
### Step-by-Step Configuration
1. **Install Google Cloud SDK (if not using Docker)**
```bash
# Linux/macOS
curl https://sdk.cloud.google.com | bash
exec -l $SHELL
gcloud init
```
2. **Authenticate gcloud**
```bash
gcloud auth application-default login
```
3. **Set project**
```bash
gcloud config set project YOUR_PROJECT_ID
```
4. **Enable required APIs**
```bash
gcloud services enable aiplatform.googleapis.com
gcloud services enable compute.googleapis.com
```
5. **Create service account (alternative to gcloud auth)**
```bash
gcloud iam service-accounts create denario-service-account \
--display-name="Denario AI Service Account"
gcloud projects add-iam-policy-binding YOUR_PROJECT_ID \
--member="serviceAccount:denario-service-account@YOUR_PROJECT_ID.iam.gserviceaccount.com" \
--role="roles/aiplatform.user"
gcloud iam service-accounts keys create credentials.json \
--iam-account=denario-service-account@YOUR_PROJECT_ID.iam.gserviceaccount.com
```
6. **Configure denario to use Vertex AI**
```python
import os
os.environ['GOOGLE_CLOUD_PROJECT'] = 'YOUR_PROJECT_ID'
os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = '/path/to/credentials.json'
from denario import Denario
den = Denario(project_dir="./research")
```
## Model Selection
Configure which models denario uses for different tasks:
```python
# In your code
from denario import Denario
# Example configuration (if supported by denario API)
den = Denario(
project_dir="./project",
# Model configuration may vary based on denario version
)
```
Check denario's documentation for specific model selection APIs.
## Cost Management
### Monitoring Costs
- **OpenAI**: Track usage at [platform.openai.com/usage](https://platform.openai.com/usage)
- **Google Cloud**: Monitor in Cloud Console → Billing
- Set up billing alerts to avoid unexpected charges
### Cost Optimization Tips
1. **Use appropriate model tiers**
- GPT-3.5 for simpler tasks
- GPT-4 for complex reasoning
2. **Batch operations**
- Process multiple research tasks in single sessions
3. **Cache results**
- Reuse generated ideas, methods, and results when possible
4. **Set token limits**
- Configure maximum token usage for cost control
## Security Best Practices
### Do NOT commit API keys to version control
Add to `.gitignore`:
```gitignore
.env
*.json # If storing credentials
credentials.json
service-account-key.json
```
### Rotate keys regularly
- Generate new API keys periodically
- Revoke old keys after rotation
### Use least privilege access
- Grant only necessary permissions to service accounts
- Use separate keys for development and production
### Encrypt sensitive files
- Store credential files in encrypted volumes
- Use cloud secret management services for production
## Troubleshooting
### "API key not found" errors
- Verify environment variables are set: `echo $OPENAI_API_KEY`
- Check `.env` file is in correct directory
- Ensure `load_dotenv()` is called before importing denario
### Vertex AI authentication failures
- Verify `GOOGLE_APPLICATION_CREDENTIALS` points to valid JSON file
- Check service account has required permissions
- Ensure APIs are enabled in Google Cloud project
### Rate limiting issues
- Implement exponential backoff
- Reduce concurrent requests
- Upgrade API plan if needed
### Docker environment variable issues
- Use `docker run --env-file .env` to pass environment
- Mount credential files with `-v` flag
- Check environment inside container: `docker exec <container> env`