526 lines
18 KiB
Markdown
526 lines
18 KiB
Markdown
---
|
||
name: deeptools
|
||
description: "NGS analysis toolkit. BAM to bigWig conversion, QC (correlation, PCA, fingerprints), heatmaps/profiles (TSS, peaks), for ChIP-seq, RNA-seq, ATAC-seq visualization."
|
||
---
|
||
|
||
# deepTools: NGS Data Analysis Toolkit
|
||
|
||
## Overview
|
||
|
||
deepTools is a comprehensive suite of Python command-line tools designed for processing and analyzing high-throughput sequencing data. Use deepTools to perform quality control, normalize data, compare samples, and generate publication-quality visualizations for ChIP-seq, RNA-seq, ATAC-seq, MNase-seq, and other NGS experiments.
|
||
|
||
**Core capabilities:**
|
||
- Convert BAM alignments to normalized coverage tracks (bigWig/bedGraph)
|
||
- Quality control assessment (fingerprint, correlation, coverage)
|
||
- Sample comparison and correlation analysis
|
||
- Heatmap and profile plot generation around genomic features
|
||
- Enrichment analysis and peak region visualization
|
||
|
||
## When to Use This Skill
|
||
|
||
This skill should be used when:
|
||
|
||
- **File conversion**: "Convert BAM to bigWig", "generate coverage tracks", "normalize ChIP-seq data"
|
||
- **Quality control**: "check ChIP quality", "compare replicates", "assess sequencing depth", "QC analysis"
|
||
- **Visualization**: "create heatmap around TSS", "plot ChIP signal", "visualize enrichment", "generate profile plot"
|
||
- **Sample comparison**: "compare treatment vs control", "correlate samples", "PCA analysis"
|
||
- **Analysis workflows**: "analyze ChIP-seq data", "RNA-seq coverage", "ATAC-seq analysis", "complete workflow"
|
||
- **Working with specific file types**: BAM files, bigWig files, BED region files in genomics context
|
||
|
||
## Quick Start
|
||
|
||
For users new to deepTools, start with file validation and common workflows:
|
||
|
||
### 1. Validate Input Files
|
||
|
||
Before running any analysis, validate BAM, bigWig, and BED files using the validation script:
|
||
|
||
```bash
|
||
python scripts/validate_files.py --bam sample1.bam sample2.bam --bed regions.bed
|
||
```
|
||
|
||
This checks file existence, BAM indices, and format correctness.
|
||
|
||
### 2. Generate Workflow Template
|
||
|
||
For standard analyses, use the workflow generator to create customized scripts:
|
||
|
||
```bash
|
||
# List available workflows
|
||
python scripts/workflow_generator.py --list
|
||
|
||
# Generate ChIP-seq QC workflow
|
||
python scripts/workflow_generator.py chipseq_qc -o qc_workflow.sh \
|
||
--input-bam Input.bam --chip-bams "ChIP1.bam ChIP2.bam" \
|
||
--genome-size 2913022398
|
||
|
||
# Make executable and run
|
||
chmod +x qc_workflow.sh
|
||
./qc_workflow.sh
|
||
```
|
||
|
||
### 3. Most Common Operations
|
||
|
||
See `assets/quick_reference.md` for frequently used commands and parameters.
|
||
|
||
## Installation
|
||
|
||
```bash
|
||
uv pip install deeptools
|
||
```
|
||
|
||
## Core Workflows
|
||
|
||
deepTools workflows typically follow this pattern: **QC → Normalization → Comparison/Visualization**
|
||
|
||
### ChIP-seq Quality Control Workflow
|
||
|
||
When users request ChIP-seq QC or quality assessment:
|
||
|
||
1. **Generate workflow script** using `scripts/workflow_generator.py chipseq_qc`
|
||
2. **Key QC steps**:
|
||
- Sample correlation (multiBamSummary + plotCorrelation)
|
||
- PCA analysis (plotPCA)
|
||
- Coverage assessment (plotCoverage)
|
||
- Fragment size validation (bamPEFragmentSize)
|
||
- ChIP enrichment strength (plotFingerprint)
|
||
|
||
**Interpreting results:**
|
||
- **Correlation**: Replicates should cluster together with high correlation (>0.9)
|
||
- **Fingerprint**: Strong ChIP shows steep rise; flat diagonal indicates poor enrichment
|
||
- **Coverage**: Assess if sequencing depth is adequate for analysis
|
||
|
||
Full workflow details in `references/workflows.md` → "ChIP-seq Quality Control Workflow"
|
||
|
||
### ChIP-seq Complete Analysis Workflow
|
||
|
||
For full ChIP-seq analysis from BAM to visualizations:
|
||
|
||
1. **Generate coverage tracks** with normalization (bamCoverage)
|
||
2. **Create comparison tracks** (bamCompare for log2 ratio)
|
||
3. **Compute signal matrices** around features (computeMatrix)
|
||
4. **Generate visualizations** (plotHeatmap, plotProfile)
|
||
5. **Enrichment analysis** at peaks (plotEnrichment)
|
||
|
||
Use `scripts/workflow_generator.py chipseq_analysis` to generate template.
|
||
|
||
Complete command sequences in `references/workflows.md` → "ChIP-seq Analysis Workflow"
|
||
|
||
### RNA-seq Coverage Workflow
|
||
|
||
For strand-specific RNA-seq coverage tracks:
|
||
|
||
Use bamCoverage with `--filterRNAstrand` to separate forward and reverse strands.
|
||
|
||
**Important:** NEVER use `--extendReads` for RNA-seq (would extend over splice junctions).
|
||
|
||
Use normalization: CPM for fixed bins, RPKM for gene-level analysis.
|
||
|
||
Template available: `scripts/workflow_generator.py rnaseq_coverage`
|
||
|
||
Details in `references/workflows.md` → "RNA-seq Coverage Workflow"
|
||
|
||
### ATAC-seq Analysis Workflow
|
||
|
||
ATAC-seq requires Tn5 offset correction:
|
||
|
||
1. **Shift reads** using alignmentSieve with `--ATACshift`
|
||
2. **Generate coverage** with bamCoverage
|
||
3. **Analyze fragment sizes** (expect nucleosome ladder pattern)
|
||
4. **Visualize at peaks** if available
|
||
|
||
Template: `scripts/workflow_generator.py atacseq`
|
||
|
||
Full workflow in `references/workflows.md` → "ATAC-seq Workflow"
|
||
|
||
## Tool Categories and Common Tasks
|
||
|
||
### BAM/bigWig Processing
|
||
|
||
**Convert BAM to normalized coverage:**
|
||
```bash
|
||
bamCoverage --bam input.bam --outFileName output.bw \
|
||
--normalizeUsing RPGC --effectiveGenomeSize 2913022398 \
|
||
--binSize 10 --numberOfProcessors 8
|
||
```
|
||
|
||
**Compare two samples (log2 ratio):**
|
||
```bash
|
||
bamCompare -b1 treatment.bam -b2 control.bam -o ratio.bw \
|
||
--operation log2 --scaleFactorsMethod readCount
|
||
```
|
||
|
||
**Key tools:** bamCoverage, bamCompare, multiBamSummary, multiBigwigSummary, correctGCBias, alignmentSieve
|
||
|
||
Complete reference: `references/tools_reference.md` → "BAM and bigWig File Processing Tools"
|
||
|
||
### Quality Control
|
||
|
||
**Check ChIP enrichment:**
|
||
```bash
|
||
plotFingerprint -b input.bam chip.bam -o fingerprint.png \
|
||
--extendReads 200 --ignoreDuplicates
|
||
```
|
||
|
||
**Sample correlation:**
|
||
```bash
|
||
multiBamSummary bins --bamfiles *.bam -o counts.npz
|
||
plotCorrelation -in counts.npz --corMethod pearson \
|
||
--whatToShow heatmap -o correlation.png
|
||
```
|
||
|
||
**Key tools:** plotFingerprint, plotCoverage, plotCorrelation, plotPCA, bamPEFragmentSize
|
||
|
||
Complete reference: `references/tools_reference.md` → "Quality Control Tools"
|
||
|
||
### Visualization
|
||
|
||
**Create heatmap around TSS:**
|
||
```bash
|
||
# Compute matrix
|
||
computeMatrix reference-point -S signal.bw -R genes.bed \
|
||
-b 3000 -a 3000 --referencePoint TSS -o matrix.gz
|
||
|
||
# Generate heatmap
|
||
plotHeatmap -m matrix.gz -o heatmap.png \
|
||
--colorMap RdBu --kmeans 3
|
||
```
|
||
|
||
**Create profile plot:**
|
||
```bash
|
||
plotProfile -m matrix.gz -o profile.png \
|
||
--plotType lines --colors blue red
|
||
```
|
||
|
||
**Key tools:** computeMatrix, plotHeatmap, plotProfile, plotEnrichment
|
||
|
||
Complete reference: `references/tools_reference.md` → "Visualization Tools"
|
||
|
||
## Normalization Methods
|
||
|
||
Choosing the correct normalization is critical for valid comparisons. Consult `references/normalization_methods.md` for comprehensive guidance.
|
||
|
||
**Quick selection guide:**
|
||
|
||
- **ChIP-seq coverage**: Use RPGC or CPM
|
||
- **ChIP-seq comparison**: Use bamCompare with log2 and readCount
|
||
- **RNA-seq bins**: Use CPM
|
||
- **RNA-seq genes**: Use RPKM (accounts for gene length)
|
||
- **ATAC-seq**: Use RPGC or CPM
|
||
|
||
**Normalization methods:**
|
||
- **RPGC**: 1× genome coverage (requires --effectiveGenomeSize)
|
||
- **CPM**: Counts per million mapped reads
|
||
- **RPKM**: Reads per kb per million (accounts for region length)
|
||
- **BPM**: Bins per million
|
||
- **None**: Raw counts (not recommended for comparisons)
|
||
|
||
Full explanation: `references/normalization_methods.md`
|
||
|
||
## Effective Genome Sizes
|
||
|
||
RPGC normalization requires effective genome size. Common values:
|
||
|
||
| Organism | Assembly | Size | Usage |
|
||
|----------|----------|------|-------|
|
||
| Human | GRCh38/hg38 | 2,913,022,398 | `--effectiveGenomeSize 2913022398` |
|
||
| Mouse | GRCm38/mm10 | 2,652,783,500 | `--effectiveGenomeSize 2652783500` |
|
||
| Zebrafish | GRCz11 | 1,368,780,147 | `--effectiveGenomeSize 1368780147` |
|
||
| *Drosophila* | dm6 | 142,573,017 | `--effectiveGenomeSize 142573017` |
|
||
| *C. elegans* | ce10/ce11 | 100,286,401 | `--effectiveGenomeSize 100286401` |
|
||
|
||
Complete table with read-length-specific values: `references/effective_genome_sizes.md`
|
||
|
||
## Common Parameters Across Tools
|
||
|
||
Many deepTools commands share these options:
|
||
|
||
**Performance:**
|
||
- `--numberOfProcessors, -p`: Enable parallel processing (always use available cores)
|
||
- `--region`: Process specific regions for testing (e.g., `chr1:1-1000000`)
|
||
|
||
**Read Filtering:**
|
||
- `--ignoreDuplicates`: Remove PCR duplicates (recommended for most analyses)
|
||
- `--minMappingQuality`: Filter by alignment quality (e.g., `--minMappingQuality 10`)
|
||
- `--minFragmentLength` / `--maxFragmentLength`: Fragment length bounds
|
||
- `--samFlagInclude` / `--samFlagExclude`: SAM flag filtering
|
||
|
||
**Read Processing:**
|
||
- `--extendReads`: Extend to fragment length (ChIP-seq: YES, RNA-seq: NO)
|
||
- `--centerReads`: Center at fragment midpoint for sharper signals
|
||
|
||
## Best Practices
|
||
|
||
### File Validation
|
||
**Always validate files first** using `scripts/validate_files.py` to check:
|
||
- File existence and readability
|
||
- BAM indices present (.bai files)
|
||
- BED format correctness
|
||
- File sizes reasonable
|
||
|
||
### Analysis Strategy
|
||
|
||
1. **Start with QC**: Run correlation, coverage, and fingerprint analysis before proceeding
|
||
2. **Test on small regions**: Use `--region chr1:1-10000000` for parameter testing
|
||
3. **Document commands**: Save full command lines for reproducibility
|
||
4. **Use consistent normalization**: Apply same method across samples in comparisons
|
||
5. **Verify genome assembly**: Ensure BAM and BED files use matching genome builds
|
||
|
||
### ChIP-seq Specific
|
||
|
||
- **Always extend reads** for ChIP-seq: `--extendReads 200`
|
||
- **Remove duplicates**: Use `--ignoreDuplicates` in most cases
|
||
- **Check enrichment first**: Run plotFingerprint before detailed analysis
|
||
- **GC correction**: Only apply if significant bias detected; never use `--ignoreDuplicates` after GC correction
|
||
|
||
### RNA-seq Specific
|
||
|
||
- **Never extend reads** for RNA-seq (would span splice junctions)
|
||
- **Strand-specific**: Use `--filterRNAstrand forward/reverse` for stranded libraries
|
||
- **Normalization**: CPM for bins, RPKM for genes
|
||
|
||
### ATAC-seq Specific
|
||
|
||
- **Apply Tn5 correction**: Use alignmentSieve with `--ATACshift`
|
||
- **Fragment filtering**: Set appropriate min/max fragment lengths
|
||
- **Check nucleosome pattern**: Fragment size plot should show ladder pattern
|
||
|
||
### Performance Optimization
|
||
|
||
1. **Use multiple processors**: `--numberOfProcessors 8` (or available cores)
|
||
2. **Increase bin size** for faster processing and smaller files
|
||
3. **Process chromosomes separately** for memory-limited systems
|
||
4. **Pre-filter BAM files** using alignmentSieve to create reusable filtered files
|
||
5. **Use bigWig over bedGraph**: Compressed and faster to process
|
||
|
||
## Troubleshooting
|
||
|
||
### Common Issues
|
||
|
||
**BAM index missing:**
|
||
```bash
|
||
samtools index input.bam
|
||
```
|
||
|
||
**Out of memory:**
|
||
Process chromosomes individually using `--region`:
|
||
```bash
|
||
bamCoverage --bam input.bam -o chr1.bw --region chr1
|
||
```
|
||
|
||
**Slow processing:**
|
||
Increase `--numberOfProcessors` and/or increase `--binSize`
|
||
|
||
**bigWig files too large:**
|
||
Increase bin size: `--binSize 50` or larger
|
||
|
||
### Validation Errors
|
||
|
||
Run validation script to identify issues:
|
||
```bash
|
||
python scripts/validate_files.py --bam *.bam --bed regions.bed
|
||
```
|
||
|
||
Common errors and solutions explained in script output.
|
||
|
||
## Reference Documentation
|
||
|
||
This skill includes comprehensive reference documentation:
|
||
|
||
### references/tools_reference.md
|
||
Complete documentation of all deepTools commands organized by category:
|
||
- BAM and bigWig processing tools (9 tools)
|
||
- Quality control tools (6 tools)
|
||
- Visualization tools (3 tools)
|
||
- Miscellaneous tools (2 tools)
|
||
|
||
Each tool includes:
|
||
- Purpose and overview
|
||
- Key parameters with explanations
|
||
- Usage examples
|
||
- Important notes and best practices
|
||
|
||
**Use this reference when:** Users ask about specific tools, parameters, or detailed usage.
|
||
|
||
### references/workflows.md
|
||
Complete workflow examples for common analyses:
|
||
- ChIP-seq quality control workflow
|
||
- ChIP-seq complete analysis workflow
|
||
- RNA-seq coverage workflow
|
||
- ATAC-seq analysis workflow
|
||
- Multi-sample comparison workflow
|
||
- Peak region analysis workflow
|
||
- Troubleshooting and performance tips
|
||
|
||
**Use this reference when:** Users need complete analysis pipelines or workflow examples.
|
||
|
||
### references/normalization_methods.md
|
||
Comprehensive guide to normalization methods:
|
||
- Detailed explanation of each method (RPGC, CPM, RPKM, BPM, etc.)
|
||
- When to use each method
|
||
- Formulas and interpretation
|
||
- Selection guide by experiment type
|
||
- Common pitfalls and solutions
|
||
- Quick reference table
|
||
|
||
**Use this reference when:** Users ask about normalization, comparing samples, or which method to use.
|
||
|
||
### references/effective_genome_sizes.md
|
||
Effective genome size values and usage:
|
||
- Common organism values (human, mouse, fly, worm, zebrafish)
|
||
- Read-length-specific values
|
||
- Calculation methods
|
||
- When and how to use in commands
|
||
- Custom genome calculation instructions
|
||
|
||
**Use this reference when:** Users need genome size for RPGC normalization or GC bias correction.
|
||
|
||
## Helper Scripts
|
||
|
||
### scripts/validate_files.py
|
||
|
||
Validates BAM, bigWig, and BED files for deepTools analysis. Checks file existence, indices, and format.
|
||
|
||
**Usage:**
|
||
```bash
|
||
python scripts/validate_files.py --bam sample1.bam sample2.bam \
|
||
--bed peaks.bed --bigwig signal.bw
|
||
```
|
||
|
||
**When to use:** Before starting any analysis, or when troubleshooting errors.
|
||
|
||
### scripts/workflow_generator.py
|
||
|
||
Generates customizable bash script templates for common deepTools workflows.
|
||
|
||
**Available workflows:**
|
||
- `chipseq_qc`: ChIP-seq quality control
|
||
- `chipseq_analysis`: Complete ChIP-seq analysis
|
||
- `rnaseq_coverage`: Strand-specific RNA-seq coverage
|
||
- `atacseq`: ATAC-seq with Tn5 correction
|
||
|
||
**Usage:**
|
||
```bash
|
||
# List workflows
|
||
python scripts/workflow_generator.py --list
|
||
|
||
# Generate workflow
|
||
python scripts/workflow_generator.py chipseq_qc -o qc.sh \
|
||
--input-bam Input.bam --chip-bams "ChIP1.bam ChIP2.bam" \
|
||
--genome-size 2913022398 --threads 8
|
||
|
||
# Run generated workflow
|
||
chmod +x qc.sh
|
||
./qc.sh
|
||
```
|
||
|
||
**When to use:** Users request standard workflows or need template scripts to customize.
|
||
|
||
## Assets
|
||
|
||
### assets/quick_reference.md
|
||
|
||
Quick reference card with most common commands, effective genome sizes, and typical workflow pattern.
|
||
|
||
**When to use:** Users need quick command examples without detailed documentation.
|
||
|
||
## Handling User Requests
|
||
|
||
### For New Users
|
||
|
||
1. Start with installation verification
|
||
2. Validate input files using `scripts/validate_files.py`
|
||
3. Recommend appropriate workflow based on experiment type
|
||
4. Generate workflow template using `scripts/workflow_generator.py`
|
||
5. Guide through customization and execution
|
||
|
||
### For Experienced Users
|
||
|
||
1. Provide specific tool commands for requested operations
|
||
2. Reference appropriate sections in `references/tools_reference.md`
|
||
3. Suggest optimizations and best practices
|
||
4. Offer troubleshooting for issues
|
||
|
||
### For Specific Tasks
|
||
|
||
**"Convert BAM to bigWig":**
|
||
- Use bamCoverage with appropriate normalization
|
||
- Recommend RPGC or CPM based on use case
|
||
- Provide effective genome size for organism
|
||
- Suggest relevant parameters (extendReads, ignoreDuplicates, binSize)
|
||
|
||
**"Check ChIP quality":**
|
||
- Run full QC workflow or use plotFingerprint specifically
|
||
- Explain interpretation of results
|
||
- Suggest follow-up actions based on results
|
||
|
||
**"Create heatmap":**
|
||
- Guide through two-step process: computeMatrix → plotHeatmap
|
||
- Help choose appropriate matrix mode (reference-point vs scale-regions)
|
||
- Suggest visualization parameters and clustering options
|
||
|
||
**"Compare samples":**
|
||
- Recommend bamCompare for two-sample comparison
|
||
- Suggest multiBamSummary + plotCorrelation for multiple samples
|
||
- Guide normalization method selection
|
||
|
||
### Referencing Documentation
|
||
|
||
When users need detailed information:
|
||
- **Tool details**: Direct to specific sections in `references/tools_reference.md`
|
||
- **Workflows**: Use `references/workflows.md` for complete analysis pipelines
|
||
- **Normalization**: Consult `references/normalization_methods.md` for method selection
|
||
- **Genome sizes**: Reference `references/effective_genome_sizes.md`
|
||
|
||
Search references using grep patterns:
|
||
```bash
|
||
# Find tool documentation
|
||
grep -A 20 "^### toolname" references/tools_reference.md
|
||
|
||
# Find workflow
|
||
grep -A 50 "^## Workflow Name" references/workflows.md
|
||
|
||
# Find normalization method
|
||
grep -A 15 "^### Method Name" references/normalization_methods.md
|
||
```
|
||
|
||
## Example Interactions
|
||
|
||
**User: "I need to analyze my ChIP-seq data"**
|
||
|
||
Response approach:
|
||
1. Ask about files available (BAM files, peaks, genes)
|
||
2. Validate files using validation script
|
||
3. Generate chipseq_analysis workflow template
|
||
4. Customize for their specific files and organism
|
||
5. Explain each step as script runs
|
||
|
||
**User: "Which normalization should I use?"**
|
||
|
||
Response approach:
|
||
1. Ask about experiment type (ChIP-seq, RNA-seq, etc.)
|
||
2. Ask about comparison goal (within-sample or between-sample)
|
||
3. Consult `references/normalization_methods.md` selection guide
|
||
4. Recommend appropriate method with justification
|
||
5. Provide command example with parameters
|
||
|
||
**User: "Create a heatmap around TSS"**
|
||
|
||
Response approach:
|
||
1. Verify bigWig and gene BED files available
|
||
2. Use computeMatrix with reference-point mode at TSS
|
||
3. Generate plotHeatmap with appropriate visualization parameters
|
||
4. Suggest clustering if dataset is large
|
||
5. Offer profile plot as complement
|
||
|
||
## Key Reminders
|
||
|
||
- **File validation first**: Always validate input files before analysis
|
||
- **Normalization matters**: Choose appropriate method for comparison type
|
||
- **Extend reads carefully**: YES for ChIP-seq, NO for RNA-seq
|
||
- **Use all cores**: Set `--numberOfProcessors` to available cores
|
||
- **Test on regions**: Use `--region` for parameter testing
|
||
- **Check QC first**: Run quality control before detailed analysis
|
||
- **Document everything**: Save commands for reproducibility
|
||
- **Reference documentation**: Use comprehensive references for detailed guidance
|