12 KiB
12 KiB
Zarr Python Quick Reference
This reference provides a concise overview of commonly used Zarr functions, parameters, and patterns for quick lookup during development.
Array Creation Functions
zarr.zeros() / zarr.ones() / zarr.empty()
zarr.zeros(shape, chunks=None, dtype='f8', store=None, compressor='default',
fill_value=0, order='C', filters=None)
Create arrays filled with zeros, ones, or empty (uninitialized) values.
Key parameters:
shape: Tuple defining array dimensions (e.g.,(1000, 1000))chunks: Tuple defining chunk dimensions (e.g.,(100, 100)), orNonefor no chunkingdtype: NumPy data type (e.g.,'f4','i8','bool')store: Storage location (string path, Store object, orNonefor memory)compressor: Compression codec orNonefor no compression
zarr.create_array() / zarr.create()
zarr.create_array(store, shape, chunks, dtype='f8', compressor='default',
fill_value=0, order='C', filters=None, overwrite=False)
Create a new array with explicit control over all parameters.
zarr.array()
zarr.array(data, chunks=None, dtype=None, compressor='default', store=None)
Create array from existing data (NumPy array, list, etc.).
Example:
import numpy as np
data = np.random.random((1000, 1000))
z = zarr.array(data, chunks=(100, 100), store='data.zarr')
zarr.open_array() / zarr.open()
zarr.open_array(store, mode='a', shape=None, chunks=None, dtype=None,
compressor='default', fill_value=0)
Open existing array or create new one.
Mode options:
'r': Read-only'r+': Read-write, file must exist'a': Read-write, create if doesn't exist (default)'w': Create new, overwrite if exists'w-': Create new, fail if exists
Storage Classes
LocalStore (Default)
from zarr.storage import LocalStore
store = LocalStore('path/to/data.zarr')
z = zarr.open_array(store=store, mode='w', shape=(1000, 1000), chunks=(100, 100))
MemoryStore
from zarr.storage import MemoryStore
store = MemoryStore() # Data only in memory
z = zarr.open_array(store=store, mode='w', shape=(1000, 1000), chunks=(100, 100))
ZipStore
from zarr.storage import ZipStore
# Write
store = ZipStore('data.zip', mode='w')
z = zarr.open_array(store=store, mode='w', shape=(1000, 1000), chunks=(100, 100))
z[:] = data
store.close() # MUST close
# Read
store = ZipStore('data.zip', mode='r')
z = zarr.open_array(store=store)
data = z[:]
store.close()
Cloud Storage (S3/GCS)
# S3
import s3fs
s3 = s3fs.S3FileSystem(anon=False)
store = s3fs.S3Map(root='bucket/path/data.zarr', s3=s3)
# GCS
import gcsfs
gcs = gcsfs.GCSFileSystem(project='my-project')
store = gcsfs.GCSMap(root='bucket/path/data.zarr', gcs=gcs)
Compression Codecs
Blosc Codec (Default)
from zarr.codecs.blosc import BloscCodec
codec = BloscCodec(
cname='zstd', # Compressor: 'blosclz', 'lz4', 'lz4hc', 'snappy', 'zlib', 'zstd'
clevel=5, # Compression level: 0-9
shuffle='shuffle' # Shuffle filter: 'noshuffle', 'shuffle', 'bitshuffle'
)
z = zarr.create_array(store='data.zarr', shape=(1000, 1000), chunks=(100, 100),
dtype='f4', codecs=[codec])
Blosc compressor characteristics:
'lz4': Fastest compression, lower ratio'zstd': Balanced (default), good ratio and speed'zlib': Good compatibility, moderate performance'lz4hc': Better ratio than lz4, slower'snappy': Fast, moderate ratio'blosclz': Blosc's default
Other Codecs
from zarr.codecs import GzipCodec, ZstdCodec, BytesCodec
# Gzip compression (maximum ratio, slower)
GzipCodec(level=6) # Level 0-9
# Zstandard compression
ZstdCodec(level=3) # Level 1-22
# No compression
BytesCodec()
Array Indexing and Selection
Basic Indexing (NumPy-style)
z = zarr.zeros((1000, 1000), chunks=(100, 100))
# Read
row = z[0, :] # Single row
col = z[:, 0] # Single column
block = z[10:20, 50:60] # Slice
element = z[5, 10] # Single element
# Write
z[0, :] = 42
z[10:20, 50:60] = np.random.random((10, 10))
Advanced Indexing
# Coordinate indexing (point selection)
z.vindex[[0, 5, 10], [2, 8, 15]] # Specific coordinates
# Orthogonal indexing (outer product)
z.oindex[0:10, [5, 10, 15]] # Rows 0-9, columns 5, 10, 15
# Block/chunk indexing
z.blocks[0, 0] # First chunk
z.blocks[0:2, 0:2] # First four chunks
Groups and Hierarchies
Creating Groups
# Create root group
root = zarr.group(store='data.zarr')
# Create nested groups
grp1 = root.create_group('group1')
grp2 = grp1.create_group('subgroup')
# Create arrays in groups
arr = grp1.create_array(name='data', shape=(1000, 1000),
chunks=(100, 100), dtype='f4')
# Access by path
arr2 = root['group1/data']
Group Methods
root = zarr.group('data.zarr')
# h5py-compatible methods
dataset = root.create_dataset('data', shape=(1000, 1000), chunks=(100, 100))
subgrp = root.require_group('subgroup') # Create if doesn't exist
# Visualize structure
print(root.tree())
# List contents
print(list(root.keys()))
print(list(root.groups()))
print(list(root.arrays()))
Array Attributes and Metadata
Working with Attributes
z = zarr.zeros((1000, 1000), chunks=(100, 100))
# Set attributes
z.attrs['units'] = 'meters'
z.attrs['description'] = 'Temperature data'
z.attrs['created'] = '2024-01-15'
z.attrs['version'] = 1.2
z.attrs['tags'] = ['climate', 'temperature']
# Read attributes
print(z.attrs['units'])
print(dict(z.attrs)) # All attributes as dict
# Update/delete
z.attrs['version'] = 2.0
del z.attrs['tags']
Note: Attributes must be JSON-serializable.
Array Properties and Methods
Properties
z = zarr.zeros((1000, 1000), chunks=(100, 100), dtype='f4')
z.shape # (1000, 1000)
z.chunks # (100, 100)
z.dtype # dtype('float32')
z.size # 1000000
z.nbytes # 4000000 (uncompressed size in bytes)
z.nbytes_stored # Actual compressed size on disk
z.nchunks # 100 (number of chunks)
z.cdata_shape # Shape in terms of chunks: (10, 10)
Methods
# Information
print(z.info) # Detailed information about array
print(z.info_items()) # Info as list of tuples
# Resizing
z.resize(1500, 1500) # Change dimensions
# Appending
z.append(new_data, axis=0) # Add data along axis
# Copying
z2 = z.copy(store='new_location.zarr')
Chunking Guidelines
Chunk Size Calculation
# For float32 (4 bytes per element):
# 1 MB = 262,144 elements
# 10 MB = 2,621,440 elements
# Examples for 1 MB chunks:
(512, 512) # For 2D: 512 × 512 × 4 = 1,048,576 bytes
(128, 128, 128) # For 3D: 128 × 128 × 128 × 4 = 8,388,608 bytes ≈ 8 MB
(64, 256, 256) # For 3D: 64 × 256 × 256 × 4 = 16,777,216 bytes ≈ 16 MB
Chunking Strategies by Access Pattern
Time series (sequential access along first dimension):
chunks=(1, 720, 1440) # One time step per chunk
Row-wise access:
chunks=(10, 10000) # Small rows, span columns
Column-wise access:
chunks=(10000, 10) # Span rows, small columns
Random access:
chunks=(500, 500) # Balanced square chunks
3D volumetric data:
chunks=(64, 64, 64) # Cubic chunks for isotropic access
Integration APIs
NumPy Integration
import numpy as np
z = zarr.zeros((1000, 1000), chunks=(100, 100))
# Use NumPy functions
result = np.sum(z, axis=0)
mean = np.mean(z)
std = np.std(z)
# Convert to NumPy
arr = z[:] # Loads entire array into memory
Dask Integration
import dask.array as da
# Load Zarr as Dask array
dask_array = da.from_zarr('data.zarr')
# Compute operations in parallel
result = dask_array.mean(axis=0).compute()
# Write Dask array to Zarr
large_array = da.random.random((100000, 100000), chunks=(1000, 1000))
da.to_zarr(large_array, 'output.zarr')
Xarray Integration
import xarray as xr
# Open Zarr as Xarray Dataset
ds = xr.open_zarr('data.zarr')
# Write Xarray to Zarr
ds.to_zarr('output.zarr')
# Create with coordinates
ds = xr.Dataset(
{'temperature': (['time', 'lat', 'lon'], data)},
coords={
'time': pd.date_range('2024-01-01', periods=365),
'lat': np.arange(-90, 91, 1),
'lon': np.arange(-180, 180, 1)
}
)
ds.to_zarr('climate.zarr')
Parallel Computing
Synchronizers
from zarr import ThreadSynchronizer, ProcessSynchronizer
# Multi-threaded writes
sync = ThreadSynchronizer()
z = zarr.open_array('data.zarr', mode='r+', synchronizer=sync)
# Multi-process writes
sync = ProcessSynchronizer('sync.sync')
z = zarr.open_array('data.zarr', mode='r+', synchronizer=sync)
Note: Synchronization only needed for:
- Concurrent writes that may span chunk boundaries
- Not needed for reads (always safe)
- Not needed if each process writes to separate chunks
Metadata Consolidation
# Consolidate metadata (after creating all arrays/groups)
zarr.consolidate_metadata('data.zarr')
# Open with consolidated metadata (faster, especially on cloud)
root = zarr.open_consolidated('data.zarr')
Benefits:
- Reduces I/O from N operations to 1
- Critical for cloud storage (reduces latency)
- Speeds up hierarchy traversal
Cautions:
- Can become stale if data updates
- Re-consolidate after modifications
- Not for frequently-updated datasets
Common Patterns
Time Series with Growing Data
# Start with empty first dimension
z = zarr.open('timeseries.zarr', mode='a',
shape=(0, 720, 1440),
chunks=(1, 720, 1440),
dtype='f4')
# Append new time steps
for new_timestep in data_stream:
z.append(new_timestep, axis=0)
Processing Large Arrays in Chunks
z = zarr.open('large_data.zarr', mode='r')
# Process without loading entire array
for i in range(0, z.shape[0], 1000):
chunk = z[i:i+1000, :]
result = process(chunk)
save(result)
Format Conversion Pipeline
# HDF5 → Zarr
import h5py
with h5py.File('data.h5', 'r') as h5:
z = zarr.array(h5['dataset'][:], chunks=(1000, 1000), store='data.zarr')
# Zarr → NumPy file
z = zarr.open('data.zarr', mode='r')
np.save('data.npy', z[:])
# Zarr → NetCDF (via Xarray)
ds = xr.open_zarr('data.zarr')
ds.to_netcdf('data.nc')
Performance Optimization Quick Checklist
- Chunk size: 1-10 MB per chunk
- Chunk shape: Align with access pattern
- Compression:
- Fast:
BloscCodec(cname='lz4', clevel=1) - Balanced:
BloscCodec(cname='zstd', clevel=5) - Maximum:
GzipCodec(level=9)
- Fast:
- Cloud storage:
- Larger chunks (5-100 MB)
- Consolidate metadata
- Consider sharding
- Parallel I/O: Use Dask for large operations
- Memory: Process in chunks, don't load entire arrays
Debugging and Profiling
z = zarr.open('data.zarr', mode='r')
# Detailed information
print(z.info)
# Size statistics
print(f"Uncompressed: {z.nbytes / 1e6:.2f} MB")
print(f"Compressed: {z.nbytes_stored / 1e6:.2f} MB")
print(f"Ratio: {z.nbytes / z.nbytes_stored:.1f}x")
# Chunk information
print(f"Chunks: {z.chunks}")
print(f"Number of chunks: {z.nchunks}")
print(f"Chunk grid: {z.cdata_shape}")
Common Data Types
# Integers
'i1', 'i2', 'i4', 'i8' # Signed: 8, 16, 32, 64-bit
'u1', 'u2', 'u4', 'u8' # Unsigned: 8, 16, 32, 64-bit
# Floats
'f2', 'f4', 'f8' # 16, 32, 64-bit (half, single, double precision)
# Others
'bool' # Boolean
'c8', 'c16' # Complex: 64, 128-bit
'S10' # Fixed-length string (10 bytes)
'U10' # Unicode string (10 characters)
Version Compatibility
Zarr-Python version 3.x supports both:
- Zarr v2 format: Legacy format, widely compatible
- Zarr v3 format: New format with sharding, improved metadata
Check format version:
# Zarr automatically detects format version
z = zarr.open('data.zarr', mode='r')
# Format info available in metadata
Error Handling
try:
z = zarr.open_array('data.zarr', mode='r')
except zarr.errors.PathNotFoundError:
print("Array does not exist")
except zarr.errors.ReadOnlyError:
print("Cannot write to read-only array")
except Exception as e:
print(f"Unexpected error: {e}")