Files
2025-11-30 08:30:10 +08:00

501 lines
10 KiB
Markdown

# Training and Fine-Tuning
## Overview
Fine-tune pre-trained models on custom datasets using the Trainer API. The Trainer handles training loops, gradient accumulation, mixed precision, logging, and checkpointing.
## Basic Fine-Tuning Workflow
### Step 1: Load and Preprocess Data
```python
from datasets import load_dataset
# Load dataset
dataset = load_dataset("yelp_review_full")
train_dataset = dataset["train"]
eval_dataset = dataset["test"]
# Tokenize
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
def tokenize_function(examples):
return tokenizer(
examples["text"],
padding="max_length",
truncation=True,
max_length=512
)
train_dataset = train_dataset.map(tokenize_function, batched=True)
eval_dataset = eval_dataset.map(tokenize_function, batched=True)
```
### Step 2: Load Model
```python
from transformers import AutoModelForSequenceClassification
model = AutoModelForSequenceClassification.from_pretrained(
"bert-base-uncased",
num_labels=5 # Number of classes
)
```
### Step 3: Define Metrics
```python
import evaluate
import numpy as np
metric = evaluate.load("accuracy")
def compute_metrics(eval_pred):
logits, labels = eval_pred
predictions = np.argmax(logits, axis=-1)
return metric.compute(predictions=predictions, references=labels)
```
### Step 4: Configure Training
```python
from transformers import TrainingArguments
training_args = TrainingArguments(
output_dir="./results",
eval_strategy="epoch",
save_strategy="epoch",
learning_rate=2e-5,
per_device_train_batch_size=8,
per_device_eval_batch_size=8,
num_train_epochs=3,
weight_decay=0.01,
logging_dir="./logs",
logging_steps=10,
load_best_model_at_end=True,
metric_for_best_model="accuracy",
)
```
### Step 5: Create Trainer and Train
```python
from transformers import Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
compute_metrics=compute_metrics,
)
# Start training
trainer.train()
# Evaluate
results = trainer.evaluate()
print(results)
```
### Step 6: Save Model
```python
trainer.save_model("./fine_tuned_model")
tokenizer.save_pretrained("./fine_tuned_model")
# Or push to Hub
trainer.push_to_hub("username/my-finetuned-model")
```
## TrainingArguments Parameters
### Essential Parameters
**output_dir**: Directory for checkpoints and logs
```python
output_dir="./results"
```
**num_train_epochs**: Number of training epochs
```python
num_train_epochs=3
```
**per_device_train_batch_size**: Batch size per GPU/CPU
```python
per_device_train_batch_size=8
```
**learning_rate**: Optimizer learning rate
```python
learning_rate=2e-5 # Common for BERT-style models
learning_rate=5e-5 # Common for smaller models
```
**weight_decay**: L2 regularization
```python
weight_decay=0.01
```
### Evaluation and Saving
**eval_strategy**: When to evaluate ("no", "steps", "epoch")
```python
eval_strategy="epoch" # Evaluate after each epoch
eval_strategy="steps" # Evaluate every eval_steps
```
**save_strategy**: When to save checkpoints
```python
save_strategy="epoch"
save_strategy="steps"
save_steps=500
```
**load_best_model_at_end**: Load best checkpoint after training
```python
load_best_model_at_end=True
metric_for_best_model="accuracy" # Metric to compare
```
### Optimization
**gradient_accumulation_steps**: Accumulate gradients over multiple steps
```python
gradient_accumulation_steps=4 # Effective batch size = batch_size * 4
```
**fp16**: Enable mixed precision (NVIDIA GPUs)
```python
fp16=True
```
**bf16**: Enable bfloat16 (newer GPUs)
```python
bf16=True
```
**gradient_checkpointing**: Trade compute for memory
```python
gradient_checkpointing=True # Slower but uses less memory
```
**optim**: Optimizer choice
```python
optim="adamw_torch" # Default
optim="adamw_8bit" # 8-bit Adam (requires bitsandbytes)
optim="adafactor" # Memory-efficient alternative
```
### Learning Rate Scheduling
**lr_scheduler_type**: Learning rate schedule
```python
lr_scheduler_type="linear" # Linear decay
lr_scheduler_type="cosine" # Cosine annealing
lr_scheduler_type="constant" # No decay
lr_scheduler_type="constant_with_warmup"
```
**warmup_steps** or **warmup_ratio**: Warmup period
```python
warmup_steps=500
# Or
warmup_ratio=0.1 # 10% of total steps
```
### Logging
**logging_dir**: TensorBoard logs directory
```python
logging_dir="./logs"
```
**logging_steps**: Log every N steps
```python
logging_steps=10
```
**report_to**: Logging integrations
```python
report_to=["tensorboard"]
report_to=["wandb"]
report_to=["tensorboard", "wandb"]
```
### Distributed Training
**ddp_backend**: Distributed backend
```python
ddp_backend="nccl" # For multi-GPU
```
**deepspeed**: DeepSpeed config file
```python
deepspeed="ds_config.json"
```
## Data Collators
Handle dynamic padding and special preprocessing:
### DataCollatorWithPadding
Pad sequences to longest in batch:
```python
from transformers import DataCollatorWithPadding
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
data_collator=data_collator,
)
```
### DataCollatorForLanguageModeling
For masked language modeling:
```python
from transformers import DataCollatorForLanguageModeling
data_collator = DataCollatorForLanguageModeling(
tokenizer=tokenizer,
mlm=True,
mlm_probability=0.15
)
```
### DataCollatorForSeq2Seq
For sequence-to-sequence tasks:
```python
from transformers import DataCollatorForSeq2Seq
data_collator = DataCollatorForSeq2Seq(
tokenizer=tokenizer,
model=model,
padding=True
)
```
## Custom Training
### Custom Trainer
Override methods for custom behavior:
```python
from transformers import Trainer
class CustomTrainer(Trainer):
def compute_loss(self, model, inputs, return_outputs=False):
labels = inputs.pop("labels")
outputs = model(**inputs)
logits = outputs.logits
# Custom loss computation
loss_fct = torch.nn.CrossEntropyLoss(weight=class_weights)
loss = loss_fct(logits.view(-1, self.model.config.num_labels), labels.view(-1))
return (loss, outputs) if return_outputs else loss
```
### Custom Callbacks
Monitor and control training:
```python
from transformers import TrainerCallback
class CustomCallback(TrainerCallback):
def on_epoch_end(self, args, state, control, **kwargs):
print(f"Epoch {state.epoch} completed")
# Custom logic here
return control
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
callbacks=[CustomCallback],
)
```
## Advanced Training Techniques
### Parameter-Efficient Fine-Tuning (PEFT)
Use LoRA for efficient fine-tuning:
```python
from peft import LoraConfig, get_peft_model
lora_config = LoraConfig(
r=16,
lora_alpha=32,
target_modules=["query", "value"],
lora_dropout=0.05,
bias="none",
task_type="SEQ_CLS"
)
model = get_peft_model(model, lora_config)
model.print_trainable_parameters() # Shows reduced parameter count
# Train normally with Trainer
trainer = Trainer(model=model, args=training_args, ...)
trainer.train()
```
### Gradient Checkpointing
Reduce memory at cost of speed:
```python
model.gradient_checkpointing_enable()
training_args = TrainingArguments(
gradient_checkpointing=True,
...
)
```
### Mixed Precision Training
```python
training_args = TrainingArguments(
fp16=True, # For NVIDIA GPUs with Tensor Cores
# or
bf16=True, # For newer GPUs (A100, H100)
...
)
```
### DeepSpeed Integration
For very large models:
```python
# ds_config.json
{
"train_batch_size": 16,
"gradient_accumulation_steps": 1,
"optimizer": {
"type": "AdamW",
"params": {
"lr": 2e-5
}
},
"fp16": {
"enabled": true
},
"zero_optimization": {
"stage": 2
}
}
```
```python
training_args = TrainingArguments(
deepspeed="ds_config.json",
...
)
```
## Training Tips
### Hyperparameter Tuning
Common starting points:
- **Learning rate**: 2e-5 to 5e-5 for BERT-like models, 1e-4 to 1e-3 for smaller models
- **Batch size**: 8-32 depending on GPU memory
- **Epochs**: 2-4 for fine-tuning, more for domain adaptation
- **Warmup**: 10% of total steps
Use Optuna for hyperparameter search:
```python
def model_init():
return AutoModelForSequenceClassification.from_pretrained(
"bert-base-uncased",
num_labels=5
)
def optuna_hp_space(trial):
return {
"learning_rate": trial.suggest_float("learning_rate", 1e-5, 5e-5, log=True),
"per_device_train_batch_size": trial.suggest_categorical("per_device_train_batch_size", [8, 16, 32]),
"num_train_epochs": trial.suggest_int("num_train_epochs", 2, 5),
}
trainer = Trainer(model_init=model_init, args=training_args, ...)
best_trial = trainer.hyperparameter_search(
direction="maximize",
backend="optuna",
hp_space=optuna_hp_space,
n_trials=10,
)
```
### Monitoring Training
Use TensorBoard:
```bash
tensorboard --logdir ./logs
```
Or Weights & Biases:
```python
import wandb
wandb.init(project="my-project")
training_args = TrainingArguments(
report_to=["wandb"],
...
)
```
### Resume Training
Resume from checkpoint:
```python
trainer.train(resume_from_checkpoint="./results/checkpoint-1000")
```
## Common Issues
**CUDA out of memory:**
- Reduce batch size
- Enable gradient checkpointing
- Use gradient accumulation
- Use 8-bit optimizers
**Overfitting:**
- Increase weight_decay
- Add dropout
- Use early stopping
- Reduce model size or training epochs
**Slow training:**
- Increase batch size
- Enable mixed precision (fp16/bf16)
- Use multiple GPUs
- Optimize data loading
## Best Practices
1. **Start small**: Test on small dataset subset first
2. **Use evaluation**: Monitor validation metrics
3. **Save checkpoints**: Enable save_strategy
4. **Log extensively**: Use TensorBoard or W&B
5. **Try different learning rates**: Start with 2e-5
6. **Use warmup**: Helps training stability
7. **Enable mixed precision**: Faster training
8. **Consider PEFT**: For large models with limited resources