336 lines
8.7 KiB
Markdown
336 lines
8.7 KiB
Markdown
# Pipeline API Reference
|
|
|
|
## Overview
|
|
|
|
Pipelines provide the simplest way to use pre-trained models for inference. They abstract away tokenization, model loading, and post-processing, offering a unified interface for dozens of tasks.
|
|
|
|
## Basic Usage
|
|
|
|
Create a pipeline by specifying a task:
|
|
|
|
```python
|
|
from transformers import pipeline
|
|
|
|
# Auto-select default model for task
|
|
pipe = pipeline("text-classification")
|
|
result = pipe("This is great!")
|
|
```
|
|
|
|
Or specify a model:
|
|
|
|
```python
|
|
pipe = pipeline("text-classification", model="distilbert-base-uncased-finetuned-sst-2-english")
|
|
```
|
|
|
|
## Supported Tasks
|
|
|
|
### Natural Language Processing
|
|
|
|
**text-generation**: Generate text continuations
|
|
```python
|
|
generator = pipeline("text-generation", model="gpt2")
|
|
output = generator("Once upon a time", max_length=50, num_return_sequences=2)
|
|
```
|
|
|
|
**text-classification**: Classify text into categories
|
|
```python
|
|
classifier = pipeline("text-classification")
|
|
result = classifier("I love this product!") # Returns label and score
|
|
```
|
|
|
|
**token-classification**: Label individual tokens (NER, POS tagging)
|
|
```python
|
|
ner = pipeline("token-classification", model="dslim/bert-base-NER")
|
|
entities = ner("Hugging Face is based in New York City")
|
|
```
|
|
|
|
**question-answering**: Extract answers from context
|
|
```python
|
|
qa = pipeline("question-answering")
|
|
result = qa(question="What is the capital?", context="Paris is the capital of France.")
|
|
```
|
|
|
|
**fill-mask**: Predict masked tokens
|
|
```python
|
|
unmasker = pipeline("fill-mask", model="bert-base-uncased")
|
|
result = unmasker("Paris is the [MASK] of France")
|
|
```
|
|
|
|
**summarization**: Summarize long texts
|
|
```python
|
|
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
|
summary = summarizer("Long article text...", max_length=130, min_length=30)
|
|
```
|
|
|
|
**translation**: Translate between languages
|
|
```python
|
|
translator = pipeline("translation_en_to_fr", model="Helsinki-NLP/opus-mt-en-fr")
|
|
result = translator("Hello, how are you?")
|
|
```
|
|
|
|
**zero-shot-classification**: Classify without training data
|
|
```python
|
|
classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
|
|
result = classifier(
|
|
"This is a course about Python programming",
|
|
candidate_labels=["education", "politics", "business"]
|
|
)
|
|
```
|
|
|
|
**sentiment-analysis**: Alias for text-classification focused on sentiment
|
|
```python
|
|
sentiment = pipeline("sentiment-analysis")
|
|
result = sentiment("This product exceeded my expectations!")
|
|
```
|
|
|
|
### Computer Vision
|
|
|
|
**image-classification**: Classify images
|
|
```python
|
|
classifier = pipeline("image-classification", model="google/vit-base-patch16-224")
|
|
result = classifier("path/to/image.jpg")
|
|
# Or use PIL Image or URL
|
|
from PIL import Image
|
|
result = classifier(Image.open("image.jpg"))
|
|
```
|
|
|
|
**object-detection**: Detect objects in images
|
|
```python
|
|
detector = pipeline("object-detection", model="facebook/detr-resnet-50")
|
|
results = detector("image.jpg") # Returns bounding boxes and labels
|
|
```
|
|
|
|
**image-segmentation**: Segment images
|
|
```python
|
|
segmenter = pipeline("image-segmentation", model="facebook/detr-resnet-50-panoptic")
|
|
segments = segmenter("image.jpg")
|
|
```
|
|
|
|
**depth-estimation**: Estimate depth from images
|
|
```python
|
|
depth = pipeline("depth-estimation", model="Intel/dpt-large")
|
|
result = depth("image.jpg")
|
|
```
|
|
|
|
**zero-shot-image-classification**: Classify images without training
|
|
```python
|
|
classifier = pipeline("zero-shot-image-classification", model="openai/clip-vit-base-patch32")
|
|
result = classifier("image.jpg", candidate_labels=["cat", "dog", "bird"])
|
|
```
|
|
|
|
### Audio
|
|
|
|
**automatic-speech-recognition**: Transcribe speech
|
|
```python
|
|
asr = pipeline("automatic-speech-recognition", model="openai/whisper-base")
|
|
text = asr("audio.mp3")
|
|
```
|
|
|
|
**audio-classification**: Classify audio
|
|
```python
|
|
classifier = pipeline("audio-classification", model="MIT/ast-finetuned-audioset-10-10-0.4593")
|
|
result = classifier("audio.wav")
|
|
```
|
|
|
|
**text-to-speech**: Generate speech from text (with specific models)
|
|
```python
|
|
tts = pipeline("text-to-speech", model="microsoft/speecht5_tts")
|
|
audio = tts("Hello, this is a test")
|
|
```
|
|
|
|
### Multimodal
|
|
|
|
**visual-question-answering**: Answer questions about images
|
|
```python
|
|
vqa = pipeline("visual-question-answering", model="dandelin/vilt-b32-finetuned-vqa")
|
|
result = vqa(image="image.jpg", question="What color is the car?")
|
|
```
|
|
|
|
**document-question-answering**: Answer questions about documents
|
|
```python
|
|
doc_qa = pipeline("document-question-answering", model="impira/layoutlm-document-qa")
|
|
result = doc_qa(image="document.png", question="What is the invoice number?")
|
|
```
|
|
|
|
**image-to-text**: Generate captions for images
|
|
```python
|
|
captioner = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
|
|
caption = captioner("image.jpg")
|
|
```
|
|
|
|
## Pipeline Parameters
|
|
|
|
### Common Parameters
|
|
|
|
**model**: Model identifier or path
|
|
```python
|
|
pipe = pipeline("task", model="model-id")
|
|
```
|
|
|
|
**device**: GPU device index (-1 for CPU, 0+ for GPU)
|
|
```python
|
|
pipe = pipeline("task", device=0) # Use first GPU
|
|
```
|
|
|
|
**device_map**: Automatic device allocation for large models
|
|
```python
|
|
pipe = pipeline("task", model="large-model", device_map="auto")
|
|
```
|
|
|
|
**dtype**: Model precision (reduces memory)
|
|
```python
|
|
import torch
|
|
pipe = pipeline("task", torch_dtype=torch.float16)
|
|
```
|
|
|
|
**batch_size**: Process multiple inputs at once
|
|
```python
|
|
pipe = pipeline("task", batch_size=8)
|
|
results = pipe(["text1", "text2", "text3"])
|
|
```
|
|
|
|
**framework**: Choose PyTorch or TensorFlow
|
|
```python
|
|
pipe = pipeline("task", framework="pt") # or "tf"
|
|
```
|
|
|
|
## Batch Processing
|
|
|
|
Process multiple inputs efficiently:
|
|
|
|
```python
|
|
classifier = pipeline("text-classification")
|
|
texts = ["Great product!", "Terrible experience", "Just okay"]
|
|
results = classifier(texts)
|
|
```
|
|
|
|
For large datasets, use generators or KeyDataset:
|
|
|
|
```python
|
|
from transformers.pipelines.pt_utils import KeyDataset
|
|
import datasets
|
|
|
|
dataset = datasets.load_dataset("dataset-name", split="test")
|
|
pipe = pipeline("task", device=0)
|
|
|
|
for output in pipe(KeyDataset(dataset, "text")):
|
|
print(output)
|
|
```
|
|
|
|
## Performance Optimization
|
|
|
|
### GPU Acceleration
|
|
|
|
Always specify device for GPU usage:
|
|
```python
|
|
pipe = pipeline("task", device=0)
|
|
```
|
|
|
|
### Mixed Precision
|
|
|
|
Use float16 for 2x speedup on supported GPUs:
|
|
```python
|
|
import torch
|
|
pipe = pipeline("task", torch_dtype=torch.float16, device=0)
|
|
```
|
|
|
|
### Batching Guidelines
|
|
|
|
- **CPU**: Usually skip batching
|
|
- **GPU with variable lengths**: May reduce efficiency
|
|
- **GPU with similar lengths**: Significant speedup
|
|
- **Real-time applications**: Skip batching (increases latency)
|
|
|
|
```python
|
|
# Good for throughput
|
|
pipe = pipeline("task", batch_size=32, device=0)
|
|
results = pipe(list_of_texts)
|
|
```
|
|
|
|
### Streaming Output
|
|
|
|
For text generation, stream tokens as they're generated:
|
|
|
|
```python
|
|
from transformers import TextStreamer
|
|
|
|
generator = pipeline("text-generation", model="gpt2", streamer=TextStreamer())
|
|
generator("The future of AI", max_length=100)
|
|
```
|
|
|
|
## Custom Pipeline Configuration
|
|
|
|
Specify tokenizer and model separately:
|
|
|
|
```python
|
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("model-id")
|
|
model = AutoModelForSequenceClassification.from_pretrained("model-id")
|
|
pipe = pipeline("text-classification", model=model, tokenizer=tokenizer)
|
|
```
|
|
|
|
Use custom pipeline classes:
|
|
|
|
```python
|
|
from transformers import TextClassificationPipeline
|
|
|
|
class CustomPipeline(TextClassificationPipeline):
|
|
def postprocess(self, model_outputs, **kwargs):
|
|
# Custom post-processing
|
|
return super().postprocess(model_outputs, **kwargs)
|
|
|
|
pipe = pipeline("text-classification", model="model-id", pipeline_class=CustomPipeline)
|
|
```
|
|
|
|
## Input Formats
|
|
|
|
Pipelines accept various input types:
|
|
|
|
**Text tasks**: Strings or lists of strings
|
|
```python
|
|
pipe("single text")
|
|
pipe(["text1", "text2"])
|
|
```
|
|
|
|
**Image tasks**: URLs, file paths, PIL Images, or numpy arrays
|
|
```python
|
|
pipe("https://example.com/image.jpg")
|
|
pipe("local/path/image.png")
|
|
pipe(PIL.Image.open("image.jpg"))
|
|
pipe(numpy_array)
|
|
```
|
|
|
|
**Audio tasks**: File paths, numpy arrays, or raw waveforms
|
|
```python
|
|
pipe("audio.mp3")
|
|
pipe(audio_array)
|
|
```
|
|
|
|
## Error Handling
|
|
|
|
Handle common issues:
|
|
|
|
```python
|
|
try:
|
|
result = pipe(input_data)
|
|
except Exception as e:
|
|
if "CUDA out of memory" in str(e):
|
|
# Reduce batch size or use CPU
|
|
pipe = pipeline("task", device=-1)
|
|
elif "does not appear to have a file named" in str(e):
|
|
# Model not found
|
|
print("Check model identifier")
|
|
else:
|
|
raise
|
|
```
|
|
|
|
## Best Practices
|
|
|
|
1. **Use pipelines for prototyping**: Fast iteration without boilerplate
|
|
2. **Specify models explicitly**: Default models may change
|
|
3. **Enable GPU when available**: Significant speedup
|
|
4. **Use batching for throughput**: When processing many inputs
|
|
5. **Consider memory usage**: Use float16 or smaller models for large batches
|
|
6. **Cache models locally**: Avoid repeated downloads
|