Files
2025-11-30 08:30:10 +08:00

530 lines
15 KiB
Python

#!/usr/bin/env python3
"""
Generate boilerplate code for common GNN architectures in PyTorch Geometric.
This script creates ready-to-use GNN model templates with training loops,
evaluation metrics, and proper data handling.
Usage:
python create_gnn_template.py --model gcn --task node_classification --output my_model.py
python create_gnn_template.py --model gat --task graph_classification --output graph_classifier.py
"""
import argparse
from pathlib import Path
TEMPLATES = {
'node_classification': {
'gcn': '''import torch
import torch.nn.functional as F
from torch_geometric.nn import GCNConv
from torch_geometric.datasets import Planetoid
class GCN(torch.nn.Module):
"""Graph Convolutional Network for node classification."""
def __init__(self, num_features, hidden_channels, num_classes, num_layers=2, dropout=0.5):
super().__init__()
self.convs = torch.nn.ModuleList()
# First layer
self.convs.append(GCNConv(num_features, hidden_channels))
# Hidden layers
for _ in range(num_layers - 2):
self.convs.append(GCNConv(hidden_channels, hidden_channels))
# Output layer
self.convs.append(GCNConv(hidden_channels, num_classes))
self.dropout = dropout
def forward(self, data):
x, edge_index = data.x, data.edge_index
# Apply conv layers with ReLU and dropout
for conv in self.convs[:-1]:
x = conv(x, edge_index)
x = F.relu(x)
x = F.dropout(x, p=self.dropout, training=self.training)
# Final layer without activation
x = self.convs[-1](x, edge_index)
return F.log_softmax(x, dim=1)
def train(model, data, optimizer):
"""Train the model for one epoch."""
model.train()
optimizer.zero_grad()
out = model(data)
loss = F.nll_loss(out[data.train_mask], data.y[data.train_mask])
loss.backward()
optimizer.step()
return loss.item()
@torch.no_grad()
def test(model, data):
"""Evaluate the model."""
model.eval()
out = model(data)
pred = out.argmax(dim=1)
accs = []
for mask in [data.train_mask, data.val_mask, data.test_mask]:
correct = (pred[mask] == data.y[mask]).sum()
accs.append(int(correct) / int(mask.sum()))
return accs
def main():
# Load dataset
dataset = Planetoid(root='/tmp/Cora', name='Cora')
data = dataset[0]
# Create model
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = GCN(
num_features=dataset.num_features,
hidden_channels=64,
num_classes=dataset.num_classes,
num_layers=3,
dropout=0.5
).to(device)
data = data.to(device)
# Setup optimizer
optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4)
# Training loop
print("Training GCN model...")
best_val_acc = 0
for epoch in range(1, 201):
loss = train(model, data, optimizer)
train_acc, val_acc, test_acc = test(model, data)
if val_acc > best_val_acc:
best_val_acc = val_acc
best_test_acc = test_acc
if epoch % 10 == 0:
print(f'Epoch {epoch:03d}, Loss: {loss:.4f}, '
f'Train: {train_acc:.4f}, Val: {val_acc:.4f}, Test: {test_acc:.4f}')
print(f'\\nBest Test Accuracy: {best_test_acc:.4f}')
if __name__ == '__main__':
main()
''',
'gat': '''import torch
import torch.nn.functional as F
from torch_geometric.nn import GATConv
from torch_geometric.datasets import Planetoid
class GAT(torch.nn.Module):
"""Graph Attention Network for node classification."""
def __init__(self, num_features, hidden_channels, num_classes, heads=8, dropout=0.6):
super().__init__()
self.conv1 = GATConv(num_features, hidden_channels, heads=heads, dropout=dropout)
self.conv2 = GATConv(hidden_channels * heads, num_classes, heads=1,
concat=False, dropout=dropout)
self.dropout = dropout
def forward(self, data):
x, edge_index = data.x, data.edge_index
x = F.dropout(x, p=self.dropout, training=self.training)
x = F.elu(self.conv1(x, edge_index))
x = F.dropout(x, p=self.dropout, training=self.training)
x = self.conv2(x, edge_index)
return F.log_softmax(x, dim=1)
def train(model, data, optimizer):
"""Train the model for one epoch."""
model.train()
optimizer.zero_grad()
out = model(data)
loss = F.nll_loss(out[data.train_mask], data.y[data.train_mask])
loss.backward()
optimizer.step()
return loss.item()
@torch.no_grad()
def test(model, data):
"""Evaluate the model."""
model.eval()
out = model(data)
pred = out.argmax(dim=1)
accs = []
for mask in [data.train_mask, data.val_mask, data.test_mask]:
correct = (pred[mask] == data.y[mask]).sum()
accs.append(int(correct) / int(mask.sum()))
return accs
def main():
# Load dataset
dataset = Planetoid(root='/tmp/Cora', name='Cora')
data = dataset[0]
# Create model
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = GAT(
num_features=dataset.num_features,
hidden_channels=8,
num_classes=dataset.num_classes,
heads=8,
dropout=0.6
).to(device)
data = data.to(device)
# Setup optimizer
optimizer = torch.optim.Adam(model.parameters(), lr=0.005, weight_decay=5e-4)
# Training loop
print("Training GAT model...")
best_val_acc = 0
for epoch in range(1, 201):
loss = train(model, data, optimizer)
train_acc, val_acc, test_acc = test(model, data)
if val_acc > best_val_acc:
best_val_acc = val_acc
best_test_acc = test_acc
if epoch % 10 == 0:
print(f'Epoch {epoch:03d}, Loss: {loss:.4f}, '
f'Train: {train_acc:.4f}, Val: {val_acc:.4f}, Test: {test_acc:.4f}')
print(f'\\nBest Test Accuracy: {best_test_acc:.4f}')
if __name__ == '__main__':
main()
''',
'graphsage': '''import torch
import torch.nn.functional as F
from torch_geometric.nn import SAGEConv
from torch_geometric.datasets import Planetoid
class GraphSAGE(torch.nn.Module):
"""GraphSAGE for node classification."""
def __init__(self, num_features, hidden_channels, num_classes, num_layers=2, dropout=0.5):
super().__init__()
self.convs = torch.nn.ModuleList()
self.convs.append(SAGEConv(num_features, hidden_channels))
for _ in range(num_layers - 2):
self.convs.append(SAGEConv(hidden_channels, hidden_channels))
self.convs.append(SAGEConv(hidden_channels, num_classes))
self.dropout = dropout
def forward(self, data):
x, edge_index = data.x, data.edge_index
for conv in self.convs[:-1]:
x = conv(x, edge_index)
x = F.relu(x)
x = F.dropout(x, p=self.dropout, training=self.training)
x = self.convs[-1](x, edge_index)
return F.log_softmax(x, dim=1)
def train(model, data, optimizer):
model.train()
optimizer.zero_grad()
out = model(data)
loss = F.nll_loss(out[data.train_mask], data.y[data.train_mask])
loss.backward()
optimizer.step()
return loss.item()
@torch.no_grad()
def test(model, data):
model.eval()
out = model(data)
pred = out.argmax(dim=1)
accs = []
for mask in [data.train_mask, data.val_mask, data.test_mask]:
correct = (pred[mask] == data.y[mask]).sum()
accs.append(int(correct) / int(mask.sum()))
return accs
def main():
dataset = Planetoid(root='/tmp/Cora', name='Cora')
data = dataset[0]
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = GraphSAGE(
num_features=dataset.num_features,
hidden_channels=64,
num_classes=dataset.num_classes,
num_layers=2,
dropout=0.5
).to(device)
data = data.to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4)
print("Training GraphSAGE model...")
best_val_acc = 0
for epoch in range(1, 201):
loss = train(model, data, optimizer)
train_acc, val_acc, test_acc = test(model, data)
if val_acc > best_val_acc:
best_val_acc = val_acc
best_test_acc = test_acc
if epoch % 10 == 0:
print(f'Epoch {epoch:03d}, Loss: {loss:.4f}, '
f'Train: {train_acc:.4f}, Val: {val_acc:.4f}, Test: {test_acc:.4f}')
print(f'\\nBest Test Accuracy: {best_test_acc:.4f}')
if __name__ == '__main__':
main()
''',
},
'graph_classification': {
'gin': '''import torch
import torch.nn.functional as F
from torch_geometric.nn import GINConv, global_add_pool
from torch_geometric.datasets import TUDataset
from torch_geometric.loader import DataLoader
class GIN(torch.nn.Module):
"""Graph Isomorphism Network for graph classification."""
def __init__(self, num_features, hidden_channels, num_classes, num_layers=3, dropout=0.5):
super().__init__()
self.convs = torch.nn.ModuleList()
self.batch_norms = torch.nn.ModuleList()
# Create MLP for first layer
nn = torch.nn.Sequential(
torch.nn.Linear(num_features, hidden_channels),
torch.nn.ReLU(),
torch.nn.Linear(hidden_channels, hidden_channels)
)
self.convs.append(GINConv(nn))
self.batch_norms.append(torch.nn.BatchNorm1d(hidden_channels))
# Hidden layers
for _ in range(num_layers - 2):
nn = torch.nn.Sequential(
torch.nn.Linear(hidden_channels, hidden_channels),
torch.nn.ReLU(),
torch.nn.Linear(hidden_channels, hidden_channels)
)
self.convs.append(GINConv(nn))
self.batch_norms.append(torch.nn.BatchNorm1d(hidden_channels))
# Output MLP
self.lin = torch.nn.Linear(hidden_channels, num_classes)
self.dropout = dropout
def forward(self, data):
x, edge_index, batch = data.x, data.edge_index, data.batch
for conv, batch_norm in zip(self.convs, self.batch_norms):
x = conv(x, edge_index)
x = batch_norm(x)
x = F.relu(x)
x = F.dropout(x, p=self.dropout, training=self.training)
# Global pooling
x = global_add_pool(x, batch)
# Output layer
x = self.lin(x)
return F.log_softmax(x, dim=1)
def train(model, loader, optimizer, device):
"""Train the model for one epoch."""
model.train()
total_loss = 0
for data in loader:
data = data.to(device)
optimizer.zero_grad()
out = model(data)
loss = F.nll_loss(out, data.y)
loss.backward()
optimizer.step()
total_loss += loss.item() * data.num_graphs
return total_loss / len(loader.dataset)
@torch.no_grad()
def test(model, loader, device):
"""Evaluate the model."""
model.eval()
correct = 0
for data in loader:
data = data.to(device)
out = model(data)
pred = out.argmax(dim=1)
correct += (pred == data.y).sum().item()
return correct / len(loader.dataset)
def main():
# Load dataset
dataset = TUDataset(root='/tmp/ENZYMES', name='ENZYMES')
print(f"Dataset: {dataset}")
print(f"Number of graphs: {len(dataset)}")
print(f"Number of features: {dataset.num_features}")
print(f"Number of classes: {dataset.num_classes}")
# Shuffle and split
dataset = dataset.shuffle()
train_dataset = dataset[:int(len(dataset) * 0.8)]
test_dataset = dataset[int(len(dataset) * 0.8):]
# Create data loaders
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=32)
# Create model
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = GIN(
num_features=dataset.num_features,
hidden_channels=64,
num_classes=dataset.num_classes,
num_layers=3,
dropout=0.5
).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
# Training loop
print("\\nTraining GIN model...")
for epoch in range(1, 101):
loss = train(model, train_loader, optimizer, device)
train_acc = test(model, train_loader, device)
test_acc = test(model, test_loader, device)
if epoch % 10 == 0:
print(f'Epoch {epoch:03d}, Loss: {loss:.4f}, '
f'Train Acc: {train_acc:.4f}, Test Acc: {test_acc:.4f}')
if __name__ == '__main__':
main()
''',
},
}
def generate_template(model_type: str, task: str, output_path: str):
"""Generate a GNN template file."""
if task not in TEMPLATES:
raise ValueError(f"Unknown task: {task}. Available: {list(TEMPLATES.keys())}")
if model_type not in TEMPLATES[task]:
raise ValueError(f"Model {model_type} not available for task {task}. "
f"Available: {list(TEMPLATES[task].keys())}")
template = TEMPLATES[task][model_type]
# Write to file
output_file = Path(output_path)
output_file.parent.mkdir(parents=True, exist_ok=True)
with open(output_file, 'w') as f:
f.write(template)
print(f"✓ Generated {model_type.upper()} template for {task}")
print(f" Saved to: {output_path}")
print(f"\\nTo run the template:")
print(f" python {output_path}")
def list_templates():
"""List all available templates."""
print("Available GNN Templates")
print("=" * 50)
for task, models in TEMPLATES.items():
print(f"\\n{task.upper()}")
print("-" * 50)
for model in models.keys():
print(f" - {model}")
print()
def main():
parser = argparse.ArgumentParser(
description="Generate GNN model templates",
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog="""
Examples:
python create_gnn_template.py --model gcn --task node_classification --output gcn_model.py
python create_gnn_template.py --model gin --task graph_classification --output gin_model.py
python create_gnn_template.py --list
"""
)
parser.add_argument('--model', type=str,
help='Model type (gcn, gat, graphsage, gin)')
parser.add_argument('--task', type=str,
help='Task type (node_classification, graph_classification)')
parser.add_argument('--output', type=str, default='gnn_model.py',
help='Output file path (default: gnn_model.py)')
parser.add_argument('--list', action='store_true',
help='List all available templates')
args = parser.parse_args()
if args.list:
list_templates()
return
if not args.model or not args.task:
parser.print_help()
print("\\n" + "=" * 50)
list_templates()
return
try:
generate_template(args.model, args.task, args.output)
except ValueError as e:
print(f"Error: {e}")
print("\\nUse --list to see available templates")
if __name__ == '__main__':
main()