16 KiB
Generalized Linear Models (GLM) Reference
This document provides comprehensive guidance on generalized linear models in statsmodels, including families, link functions, and applications.
Overview
GLMs extend linear regression to non-normal response distributions through:
- Distribution family: Specifies the conditional distribution of the response
- Link function: Transforms the linear predictor to the scale of the mean
- Variance function: Relates variance to the mean
General form: g(μ) = Xβ, where g is the link function and μ = E(Y|X)
When to Use GLM
- Binary outcomes: Logistic regression (Binomial family with logit link)
- Count data: Poisson or Negative Binomial regression
- Positive continuous data: Gamma or Inverse Gaussian
- Non-normal distributions: When OLS assumptions violated
- Link functions: Need non-linear relationship between predictors and response scale
Distribution Families
Binomial Family
For binary outcomes (0/1) or proportions (k/n).
When to use:
- Binary classification
- Success/failure outcomes
- Proportions or rates
Common links:
- Logit (default): log(μ/(1-μ))
- Probit: Φ⁻¹(μ)
- Log: log(μ)
import statsmodels.api as sm
import statsmodels.formula.api as smf
# Binary logistic regression
model = sm.GLM(y, X, family=sm.families.Binomial())
results = model.fit()
# Formula API
results = smf.glm('success ~ x1 + x2', data=df,
family=sm.families.Binomial()).fit()
# Access predictions (probabilities)
probs = results.predict(X_new)
# Classification (0.5 threshold)
predictions = (probs > 0.5).astype(int)
Interpretation:
import numpy as np
# Odds ratios (for logit link)
odds_ratios = np.exp(results.params)
print("Odds ratios:", odds_ratios)
# For 1-unit increase in x, odds multiply by exp(beta)
Poisson Family
For count data (non-negative integers).
When to use:
- Count outcomes (number of events)
- Rare events
- Rate modeling (with offset)
Common links:
- Log (default): log(μ)
- Identity: μ
- Sqrt: √μ
# Poisson regression
model = sm.GLM(y, X, family=sm.families.Poisson())
results = model.fit()
# With exposure/offset for rates
# If modeling rate = counts/exposure
model = sm.GLM(y, X, family=sm.families.Poisson(),
offset=np.log(exposure))
results = model.fit()
# Interpretation: exp(beta) = multiplicative effect on expected count
import numpy as np
rate_ratios = np.exp(results.params)
print("Rate ratios:", rate_ratios)
Overdispersion check:
# Deviance / df should be ~1 for Poisson
overdispersion = results.deviance / results.df_resid
print(f"Overdispersion: {overdispersion}")
# If >> 1, consider Negative Binomial
if overdispersion > 1.5:
print("Consider Negative Binomial model for overdispersion")
Negative Binomial Family
For overdispersed count data.
When to use:
- Count data with variance > mean
- Excess zeros or large variance
- Poisson model shows overdispersion
# Negative Binomial GLM
model = sm.GLM(y, X, family=sm.families.NegativeBinomial())
results = model.fit()
# Alternative: use discrete choice model with alpha estimation
from statsmodels.discrete.discrete_model import NegativeBinomial
nb_model = NegativeBinomial(y, X)
nb_results = nb_model.fit()
print(f"Dispersion parameter alpha: {nb_results.params[-1]}")
Gaussian Family
Equivalent to OLS but fit via IRLS (Iteratively Reweighted Least Squares).
When to use:
- Want GLM framework for consistency
- Need robust standard errors
- Comparing with other GLMs
Common links:
- Identity (default): μ
- Log: log(μ)
- Inverse: 1/μ
# Gaussian GLM (equivalent to OLS)
model = sm.GLM(y, X, family=sm.families.Gaussian())
results = model.fit()
# Verify equivalence with OLS
ols_results = sm.OLS(y, X).fit()
print("Parameters close:", np.allclose(results.params, ols_results.params))
Gamma Family
For positive continuous data, often right-skewed.
When to use:
- Positive outcomes (insurance claims, survival times)
- Right-skewed distributions
- Variance proportional to mean²
Common links:
- Inverse (default): 1/μ
- Log: log(μ)
- Identity: μ
# Gamma regression (common for cost data)
model = sm.GLM(y, X, family=sm.families.Gamma())
results = model.fit()
# Log link often preferred for interpretation
model = sm.GLM(y, X, family=sm.families.Gamma(link=sm.families.links.Log()))
results = model.fit()
# With log link, exp(beta) = multiplicative effect
import numpy as np
effects = np.exp(results.params)
Inverse Gaussian Family
For positive continuous data with specific variance structure.
When to use:
- Positive skewed outcomes
- Variance proportional to mean³
- Alternative to Gamma
Common links:
- Inverse squared (default): 1/μ²
- Log: log(μ)
model = sm.GLM(y, X, family=sm.families.InverseGaussian())
results = model.fit()
Tweedie Family
Flexible family covering multiple distributions.
When to use:
- Insurance claims (mixture of zeros and continuous)
- Semi-continuous data
- Need flexible variance function
Special cases (power parameter p):
- p=0: Normal
- p=1: Poisson
- p=2: Gamma
- p=3: Inverse Gaussian
- 1<p<2: Compound Poisson-Gamma (common for insurance)
# Tweedie with power=1.5
model = sm.GLM(y, X, family=sm.families.Tweedie(link=sm.families.links.Log(),
var_power=1.5))
results = model.fit()
Link Functions
Link functions connect the linear predictor to the mean of the response.
Available Links
from statsmodels.genmod import families
# Identity: g(μ) = μ
link = families.links.Identity()
# Log: g(μ) = log(μ)
link = families.links.Log()
# Logit: g(μ) = log(μ/(1-μ))
link = families.links.Logit()
# Probit: g(μ) = Φ⁻¹(μ)
link = families.links.Probit()
# Complementary log-log: g(μ) = log(-log(1-μ))
link = families.links.CLogLog()
# Inverse: g(μ) = 1/μ
link = families.links.InversePower()
# Inverse squared: g(μ) = 1/μ²
link = families.links.InverseSquared()
# Square root: g(μ) = √μ
link = families.links.Sqrt()
# Power: g(μ) = μ^p
link = families.links.Power(power=2)
Choosing Link Functions
Canonical links (default for each family):
- Binomial → Logit
- Poisson → Log
- Gamma → Inverse
- Gaussian → Identity
- Inverse Gaussian → Inverse squared
When to use non-canonical:
- Log link with Binomial: Risk ratios instead of odds ratios
- Identity link: Direct additive effects (when sensible)
- Probit vs Logit: Similar results, preference based on field
- CLogLog: Asymmetric relationship, common in survival analysis
# Example: Risk ratios with log-binomial model
model = sm.GLM(y, X, family=sm.families.Binomial(link=sm.families.links.Log()))
results = model.fit()
# exp(beta) now gives risk ratios, not odds ratios
risk_ratios = np.exp(results.params)
Model Fitting and Results
Basic Workflow
import statsmodels.api as sm
# Add constant
X = sm.add_constant(X_data)
# Specify family and link
family = sm.families.Poisson(link=sm.families.links.Log())
# Fit model using IRLS
model = sm.GLM(y, X, family=family)
results = model.fit()
# Summary
print(results.summary())
Results Attributes
# Parameters and inference
results.params # Coefficients
results.bse # Standard errors
results.tvalues # Z-statistics
results.pvalues # P-values
results.conf_int() # Confidence intervals
# Predictions
results.fittedvalues # Fitted values (μ)
results.predict(X_new) # Predictions for new data
# Model fit statistics
results.aic # Akaike Information Criterion
results.bic # Bayesian Information Criterion
results.deviance # Deviance
results.null_deviance # Null model deviance
results.pearson_chi2 # Pearson chi-squared statistic
results.df_resid # Residual degrees of freedom
results.llf # Log-likelihood
# Residuals
results.resid_response # Response residuals (y - μ)
results.resid_pearson # Pearson residuals
results.resid_deviance # Deviance residuals
results.resid_anscombe # Anscombe residuals
results.resid_working # Working residuals
Pseudo R-squared
# McFadden's pseudo R-squared
pseudo_r2 = 1 - (results.deviance / results.null_deviance)
print(f"Pseudo R²: {pseudo_r2:.4f}")
# Adjusted pseudo R-squared
n = len(y)
k = len(results.params)
adj_pseudo_r2 = 1 - ((n-1)/(n-k)) * (results.deviance / results.null_deviance)
print(f"Adjusted Pseudo R²: {adj_pseudo_r2:.4f}")
Diagnostics
Goodness of Fit
# Deviance should be approximately χ² with df_resid degrees of freedom
from scipy import stats
deviance_pval = 1 - stats.chi2.cdf(results.deviance, results.df_resid)
print(f"Deviance test p-value: {deviance_pval}")
# Pearson chi-squared test
pearson_pval = 1 - stats.chi2.cdf(results.pearson_chi2, results.df_resid)
print(f"Pearson chi² test p-value: {pearson_pval}")
# Check for overdispersion/underdispersion
dispersion = results.pearson_chi2 / results.df_resid
print(f"Dispersion: {dispersion}")
# Should be ~1; >1 suggests overdispersion, <1 underdispersion
Residual Analysis
import matplotlib.pyplot as plt
# Deviance residuals vs fitted
plt.figure(figsize=(10, 6))
plt.scatter(results.fittedvalues, results.resid_deviance, alpha=0.5)
plt.xlabel('Fitted values')
plt.ylabel('Deviance residuals')
plt.axhline(y=0, color='r', linestyle='--')
plt.title('Deviance Residuals vs Fitted')
plt.show()
# Q-Q plot of deviance residuals
from statsmodels.graphics.gofplots import qqplot
qqplot(results.resid_deviance, line='s')
plt.title('Q-Q Plot of Deviance Residuals')
plt.show()
# For binary outcomes: binned residual plot
if isinstance(results.model.family, sm.families.Binomial):
from statsmodels.graphics.gofplots import qqplot
# Group predictions and compute average residuals
# (custom implementation needed)
pass
Influence and Outliers
from statsmodels.stats.outliers_influence import GLMInfluence
influence = GLMInfluence(results)
# Leverage
leverage = influence.hat_matrix_diag
# Cook's distance
cooks_d = influence.cooks_distance[0]
# DFFITS
dffits = influence.dffits[0]
# Find influential observations
influential = np.where(cooks_d > 4/len(y))[0]
print(f"Influential observations: {influential}")
Hypothesis Testing
# Wald test for single parameter (automatically in summary)
# Likelihood ratio test for nested models
# Fit reduced model
model_reduced = sm.GLM(y, X_reduced, family=family).fit()
model_full = sm.GLM(y, X_full, family=family).fit()
# LR statistic
lr_stat = 2 * (model_full.llf - model_reduced.llf)
df = model_full.df_model - model_reduced.df_model
from scipy import stats
lr_pval = 1 - stats.chi2.cdf(lr_stat, df)
print(f"LR test p-value: {lr_pval}")
# Wald test for multiple parameters
# Test beta_1 = beta_2 = 0
R = [[0, 1, 0, 0], [0, 0, 1, 0]]
wald_test = results.wald_test(R)
print(wald_test)
Robust Standard Errors
# Heteroscedasticity-robust (sandwich estimator)
results_robust = results.get_robustcov_results(cov_type='HC0')
# Cluster-robust
results_cluster = results.get_robustcov_results(cov_type='cluster',
groups=cluster_ids)
# Compare standard errors
print("Regular SE:", results.bse)
print("Robust SE:", results_robust.bse)
Model Comparison
# AIC/BIC for non-nested models
models = [model1_results, model2_results, model3_results]
for i, res in enumerate(models, 1):
print(f"Model {i}: AIC={res.aic:.2f}, BIC={res.bic:.2f}")
# Likelihood ratio test for nested models (as shown above)
# Cross-validation for predictive performance
from sklearn.model_selection import KFold
from sklearn.metrics import log_loss
kf = KFold(n_splits=5, shuffle=True, random_state=42)
cv_scores = []
for train_idx, val_idx in kf.split(X):
X_train, X_val = X[train_idx], X[val_idx]
y_train, y_val = y[train_idx], y[val_idx]
model_cv = sm.GLM(y_train, X_train, family=family).fit()
pred_probs = model_cv.predict(X_val)
score = log_loss(y_val, pred_probs)
cv_scores.append(score)
print(f"CV Log Loss: {np.mean(cv_scores):.4f} ± {np.std(cv_scores):.4f}")
Prediction
# Point predictions
predictions = results.predict(X_new)
# For classification: get probabilities and convert
if isinstance(family, sm.families.Binomial):
probs = predictions
class_predictions = (probs > 0.5).astype(int)
# For counts: predictions are expected counts
if isinstance(family, sm.families.Poisson):
expected_counts = predictions
# Prediction intervals via bootstrap
n_boot = 1000
boot_preds = np.zeros((n_boot, len(X_new)))
for i in range(n_boot):
# Bootstrap resample
boot_idx = np.random.choice(len(y), size=len(y), replace=True)
X_boot, y_boot = X[boot_idx], y[boot_idx]
# Fit and predict
boot_model = sm.GLM(y_boot, X_boot, family=family).fit()
boot_preds[i] = boot_model.predict(X_new)
# 95% prediction intervals
pred_lower = np.percentile(boot_preds, 2.5, axis=0)
pred_upper = np.percentile(boot_preds, 97.5, axis=0)
Common Applications
Logistic Regression (Binary Classification)
import statsmodels.api as sm
# Fit logistic regression
X = sm.add_constant(X_data)
model = sm.GLM(y, X, family=sm.families.Binomial())
results = model.fit()
# Odds ratios
odds_ratios = np.exp(results.params)
odds_ci = np.exp(results.conf_int())
# Classification metrics
from sklearn.metrics import classification_report, roc_auc_score
probs = results.predict(X)
predictions = (probs > 0.5).astype(int)
print(classification_report(y, predictions))
print(f"AUC: {roc_auc_score(y, probs):.4f}")
# ROC curve
from sklearn.metrics import roc_curve
import matplotlib.pyplot as plt
fpr, tpr, thresholds = roc_curve(y, probs)
plt.plot(fpr, tpr)
plt.plot([0, 1], [0, 1], 'k--')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Curve')
plt.show()
Poisson Regression (Count Data)
# Fit Poisson model
X = sm.add_constant(X_data)
model = sm.GLM(y_counts, X, family=sm.families.Poisson())
results = model.fit()
# Rate ratios
rate_ratios = np.exp(results.params)
print("Rate ratios:", rate_ratios)
# Check overdispersion
dispersion = results.pearson_chi2 / results.df_resid
if dispersion > 1.5:
print(f"Overdispersion detected ({dispersion:.2f}). Consider Negative Binomial.")
Gamma Regression (Cost/Duration Data)
# Fit Gamma model with log link
X = sm.add_constant(X_data)
model = sm.GLM(y_cost, X,
family=sm.families.Gamma(link=sm.families.links.Log()))
results = model.fit()
# Multiplicative effects
effects = np.exp(results.params)
print("Multiplicative effects on mean:", effects)
Best Practices
- Check distribution assumptions: Plot histograms and Q-Q plots of response
- Verify link function: Use canonical links unless there's a reason not to
- Examine residuals: Deviance residuals should be approximately normal
- Test for overdispersion: Especially for Poisson models
- Use offsets appropriately: For rate modeling with varying exposure
- Consider robust SEs: When variance assumptions questionable
- Compare models: Use AIC/BIC for non-nested, LR test for nested
- Interpret on original scale: Transform coefficients (e.g., exp for log link)
- Check influential observations: Use Cook's distance
- Validate predictions: Use cross-validation or holdout set
Common Pitfalls
- Forgetting to add constant: No intercept term
- Using wrong family: Check distribution of response
- Ignoring overdispersion: Use Negative Binomial instead of Poisson
- Misinterpreting coefficients: Remember link function transformation
- Not checking convergence: IRLS may not converge; check warnings
- Complete separation in logistic: Some categories perfectly predict outcome
- Using identity link with bounded outcomes: May predict outside valid range
- Comparing models with different samples: Use same observations
- Forgetting offset in rate models: Must use log(exposure) as offset
- Not considering alternatives: Mixed models, zero-inflation for complex data