670 lines
17 KiB
Markdown
670 lines
17 KiB
Markdown
# Discrete Choice Models Reference
|
||
|
||
This document provides comprehensive guidance on discrete choice models in statsmodels, including binary, multinomial, count, and ordinal models.
|
||
|
||
## Overview
|
||
|
||
Discrete choice models handle outcomes that are:
|
||
- **Binary**: 0/1, success/failure
|
||
- **Multinomial**: Multiple unordered categories
|
||
- **Ordinal**: Ordered categories
|
||
- **Count**: Non-negative integers
|
||
|
||
All models use maximum likelihood estimation and assume i.i.d. errors.
|
||
|
||
## Binary Models
|
||
|
||
### Logit (Logistic Regression)
|
||
|
||
Uses logistic distribution for binary outcomes.
|
||
|
||
**When to use:**
|
||
- Binary classification (yes/no, success/failure)
|
||
- Probability estimation for binary outcomes
|
||
- Interpretable odds ratios
|
||
|
||
**Model**: P(Y=1|X) = 1 / (1 + exp(-Xβ))
|
||
|
||
```python
|
||
import statsmodels.api as sm
|
||
from statsmodels.discrete.discrete_model import Logit
|
||
|
||
# Prepare data
|
||
X = sm.add_constant(X_data)
|
||
|
||
# Fit model
|
||
model = Logit(y, X)
|
||
results = model.fit()
|
||
|
||
print(results.summary())
|
||
```
|
||
|
||
**Interpretation:**
|
||
```python
|
||
import numpy as np
|
||
|
||
# Odds ratios
|
||
odds_ratios = np.exp(results.params)
|
||
print("Odds ratios:", odds_ratios)
|
||
|
||
# For 1-unit increase in X, odds multiply by exp(β)
|
||
# OR > 1: increases odds of success
|
||
# OR < 1: decreases odds of success
|
||
# OR = 1: no effect
|
||
|
||
# Confidence intervals for odds ratios
|
||
odds_ci = np.exp(results.conf_int())
|
||
print("Odds ratio 95% CI:")
|
||
print(odds_ci)
|
||
```
|
||
|
||
**Marginal effects:**
|
||
```python
|
||
# Average marginal effects (AME)
|
||
marginal_effects = results.get_margeff(at='mean')
|
||
print(marginal_effects.summary())
|
||
|
||
# Marginal effects at means (MEM)
|
||
marginal_effects_mem = results.get_margeff(at='mean', method='dydx')
|
||
|
||
# Marginal effects at representative values
|
||
marginal_effects_custom = results.get_margeff(at='mean',
|
||
atexog={'x1': 1, 'x2': 5})
|
||
```
|
||
|
||
**Predictions:**
|
||
```python
|
||
# Predicted probabilities
|
||
probs = results.predict(X)
|
||
|
||
# Binary predictions (0.5 threshold)
|
||
predictions = (probs > 0.5).astype(int)
|
||
|
||
# Custom threshold
|
||
threshold = 0.3
|
||
predictions_custom = (probs > threshold).astype(int)
|
||
|
||
# For new data
|
||
X_new = sm.add_constant(X_new_data)
|
||
new_probs = results.predict(X_new)
|
||
```
|
||
|
||
**Model evaluation:**
|
||
```python
|
||
from sklearn.metrics import (classification_report, confusion_matrix,
|
||
roc_auc_score, roc_curve)
|
||
|
||
# Classification report
|
||
print(classification_report(y, predictions))
|
||
|
||
# Confusion matrix
|
||
print(confusion_matrix(y, predictions))
|
||
|
||
# AUC-ROC
|
||
auc = roc_auc_score(y, probs)
|
||
print(f"AUC: {auc:.4f}")
|
||
|
||
# Pseudo R-squared
|
||
print(f"McFadden's Pseudo R²: {results.prsquared:.4f}")
|
||
```
|
||
|
||
### Probit
|
||
|
||
Uses normal distribution for binary outcomes.
|
||
|
||
**When to use:**
|
||
- Binary outcomes
|
||
- Prefer normal distribution assumption
|
||
- Field convention (econometrics often uses probit)
|
||
|
||
**Model**: P(Y=1|X) = Φ(Xβ), where Φ is standard normal CDF
|
||
|
||
```python
|
||
from statsmodels.discrete.discrete_model import Probit
|
||
|
||
model = Probit(y, X)
|
||
results = model.fit()
|
||
|
||
print(results.summary())
|
||
```
|
||
|
||
**Comparison with Logit:**
|
||
- Probit and Logit usually give similar results
|
||
- Probit: symmetric, based on normal distribution
|
||
- Logit: slightly heavier tails, easier interpretation (odds ratios)
|
||
- Coefficients not directly comparable (scale difference)
|
||
|
||
```python
|
||
# Marginal effects are comparable
|
||
logit_me = logit_results.get_margeff().margeff
|
||
probit_me = probit_results.get_margeff().margeff
|
||
|
||
print("Logit marginal effects:", logit_me)
|
||
print("Probit marginal effects:", probit_me)
|
||
```
|
||
|
||
## Multinomial Models
|
||
|
||
### MNLogit (Multinomial Logit)
|
||
|
||
For unordered categorical outcomes with 3+ categories.
|
||
|
||
**When to use:**
|
||
- Multiple unordered categories (e.g., transportation mode, brand choice)
|
||
- No natural ordering among categories
|
||
- Need probabilities for each category
|
||
|
||
**Model**: P(Y=j|X) = exp(Xβⱼ) / Σₖ exp(Xβₖ)
|
||
|
||
```python
|
||
from statsmodels.discrete.discrete_model import MNLogit
|
||
|
||
# y should be integers 0, 1, 2, ... for categories
|
||
model = MNLogit(y, X)
|
||
results = model.fit()
|
||
|
||
print(results.summary())
|
||
```
|
||
|
||
**Interpretation:**
|
||
```python
|
||
# One category is reference (usually category 0)
|
||
# Coefficients represent log-odds relative to reference
|
||
|
||
# For category j vs reference:
|
||
# exp(β_j) = odds ratio of category j vs reference
|
||
|
||
# Predicted probabilities for each category
|
||
probs = results.predict(X) # Shape: (n_samples, n_categories)
|
||
|
||
# Most likely category
|
||
predicted_categories = probs.argmax(axis=1)
|
||
```
|
||
|
||
**Relative risk ratios:**
|
||
```python
|
||
# Exponentiate coefficients for relative risk ratios
|
||
import numpy as np
|
||
import pandas as pd
|
||
|
||
# Get parameter names and values
|
||
params_df = pd.DataFrame({
|
||
'coef': results.params,
|
||
'RRR': np.exp(results.params)
|
||
})
|
||
print(params_df)
|
||
```
|
||
|
||
### Conditional Logit
|
||
|
||
For choice models where alternatives have characteristics.
|
||
|
||
**When to use:**
|
||
- Alternative-specific regressors (vary across choices)
|
||
- Panel data with choices
|
||
- Discrete choice experiments
|
||
|
||
```python
|
||
from statsmodels.discrete.conditional_models import ConditionalLogit
|
||
|
||
# Data structure: long format with choice indicator
|
||
model = ConditionalLogit(y_choice, X_alternatives, groups=individual_id)
|
||
results = model.fit()
|
||
```
|
||
|
||
## Count Models
|
||
|
||
### Poisson
|
||
|
||
Standard model for count data.
|
||
|
||
**When to use:**
|
||
- Count outcomes (events, occurrences)
|
||
- Rare events
|
||
- Mean ≈ variance
|
||
|
||
**Model**: P(Y=k|X) = exp(-λ) λᵏ / k!, where log(λ) = Xβ
|
||
|
||
```python
|
||
from statsmodels.discrete.count_model import Poisson
|
||
|
||
model = Poisson(y_counts, X)
|
||
results = model.fit()
|
||
|
||
print(results.summary())
|
||
```
|
||
|
||
**Interpretation:**
|
||
```python
|
||
# Rate ratios (incident rate ratios)
|
||
rate_ratios = np.exp(results.params)
|
||
print("Rate ratios:", rate_ratios)
|
||
|
||
# For 1-unit increase in X, expected count multiplies by exp(β)
|
||
```
|
||
|
||
**Check overdispersion:**
|
||
```python
|
||
# Mean and variance should be similar for Poisson
|
||
print(f"Mean: {y_counts.mean():.2f}")
|
||
print(f"Variance: {y_counts.var():.2f}")
|
||
|
||
# Formal test
|
||
from statsmodels.stats.stattools import durbin_watson
|
||
|
||
# Overdispersion if variance >> mean
|
||
# Rule of thumb: variance/mean > 1.5 suggests overdispersion
|
||
overdispersion_ratio = y_counts.var() / y_counts.mean()
|
||
print(f"Variance/Mean: {overdispersion_ratio:.2f}")
|
||
|
||
if overdispersion_ratio > 1.5:
|
||
print("Consider Negative Binomial model")
|
||
```
|
||
|
||
**With offset (for rates):**
|
||
```python
|
||
# When modeling rates with varying exposure
|
||
# log(λ) = log(exposure) + Xβ
|
||
|
||
model = Poisson(y_counts, X, offset=np.log(exposure))
|
||
results = model.fit()
|
||
```
|
||
|
||
### Negative Binomial
|
||
|
||
For overdispersed count data (variance > mean).
|
||
|
||
**When to use:**
|
||
- Count data with overdispersion
|
||
- Excess variance not explained by Poisson
|
||
- Heterogeneity in counts
|
||
|
||
**Model**: Adds dispersion parameter α to account for overdispersion
|
||
|
||
```python
|
||
from statsmodels.discrete.count_model import NegativeBinomial
|
||
|
||
model = NegativeBinomial(y_counts, X)
|
||
results = model.fit()
|
||
|
||
print(results.summary())
|
||
print(f"Dispersion parameter alpha: {results.params['alpha']:.4f}")
|
||
```
|
||
|
||
**Compare with Poisson:**
|
||
```python
|
||
# Fit both models
|
||
poisson_results = Poisson(y_counts, X).fit()
|
||
nb_results = NegativeBinomial(y_counts, X).fit()
|
||
|
||
# AIC comparison (lower is better)
|
||
print(f"Poisson AIC: {poisson_results.aic:.2f}")
|
||
print(f"Negative Binomial AIC: {nb_results.aic:.2f}")
|
||
|
||
# Likelihood ratio test (if NB is better)
|
||
from scipy import stats
|
||
lr_stat = 2 * (nb_results.llf - poisson_results.llf)
|
||
lr_pval = 1 - stats.chi2.cdf(lr_stat, df=1) # 1 extra parameter (alpha)
|
||
print(f"LR test p-value: {lr_pval:.4f}")
|
||
|
||
if lr_pval < 0.05:
|
||
print("Negative Binomial significantly better")
|
||
```
|
||
|
||
### Zero-Inflated Models
|
||
|
||
For count data with excess zeros.
|
||
|
||
**When to use:**
|
||
- More zeros than expected from Poisson/NB
|
||
- Two processes: one for zeros, one for counts
|
||
- Examples: number of doctor visits, insurance claims
|
||
|
||
**Models:**
|
||
- ZeroInflatedPoisson (ZIP)
|
||
- ZeroInflatedNegativeBinomialP (ZINB)
|
||
|
||
```python
|
||
from statsmodels.discrete.count_model import (ZeroInflatedPoisson,
|
||
ZeroInflatedNegativeBinomialP)
|
||
|
||
# ZIP model
|
||
zip_model = ZeroInflatedPoisson(y_counts, X, exog_infl=X_inflation)
|
||
zip_results = zip_model.fit()
|
||
|
||
# ZINB model (for overdispersion + excess zeros)
|
||
zinb_model = ZeroInflatedNegativeBinomialP(y_counts, X, exog_infl=X_inflation)
|
||
zinb_results = zinb_model.fit()
|
||
|
||
print(zip_results.summary())
|
||
```
|
||
|
||
**Two parts of the model:**
|
||
```python
|
||
# 1. Inflation model: P(Y=0 due to inflation)
|
||
# 2. Count model: distribution of counts
|
||
|
||
# Predicted probabilities of inflation
|
||
inflation_probs = zip_results.predict(X, which='prob')
|
||
|
||
# Predicted counts
|
||
predicted_counts = zip_results.predict(X, which='mean')
|
||
```
|
||
|
||
### Hurdle Models
|
||
|
||
Two-stage model: whether any counts, then how many.
|
||
|
||
**When to use:**
|
||
- Excess zeros
|
||
- Different processes for zero vs positive counts
|
||
- Zeros structurally different from positive values
|
||
|
||
```python
|
||
from statsmodels.discrete.count_model import HurdleCountModel
|
||
|
||
# Specify count distribution and zero inflation
|
||
model = HurdleCountModel(y_counts, X,
|
||
exog_infl=X_hurdle,
|
||
dist='poisson') # or 'negbin'
|
||
results = model.fit()
|
||
|
||
print(results.summary())
|
||
```
|
||
|
||
## Ordinal Models
|
||
|
||
### Ordered Logit/Probit
|
||
|
||
For ordered categorical outcomes.
|
||
|
||
**When to use:**
|
||
- Ordered categories (e.g., low/medium/high, ratings 1-5)
|
||
- Natural ordering matters
|
||
- Want to respect ordinal structure
|
||
|
||
**Model**: Cumulative probability model with cutpoints
|
||
|
||
```python
|
||
from statsmodels.miscmodels.ordinal_model import OrderedModel
|
||
|
||
# y should be ordered integers: 0, 1, 2, ...
|
||
model = OrderedModel(y_ordered, X, distr='logit') # or 'probit'
|
||
results = model.fit(method='bfgs')
|
||
|
||
print(results.summary())
|
||
```
|
||
|
||
**Interpretation:**
|
||
```python
|
||
# Cutpoints (thresholds between categories)
|
||
cutpoints = results.params[-n_categories+1:]
|
||
print("Cutpoints:", cutpoints)
|
||
|
||
# Coefficients
|
||
coefficients = results.params[:-n_categories+1]
|
||
print("Coefficients:", coefficients)
|
||
|
||
# Predicted probabilities for each category
|
||
probs = results.predict(X) # Shape: (n_samples, n_categories)
|
||
|
||
# Most likely category
|
||
predicted_categories = probs.argmax(axis=1)
|
||
```
|
||
|
||
**Proportional odds assumption:**
|
||
```python
|
||
# Test if coefficients are same across cutpoints
|
||
# (Brant test - implement manually or check residuals)
|
||
|
||
# Check: model each cutpoint separately and compare coefficients
|
||
```
|
||
|
||
## Model Diagnostics
|
||
|
||
### Goodness of Fit
|
||
|
||
```python
|
||
# Pseudo R-squared (McFadden)
|
||
print(f"Pseudo R²: {results.prsquared:.4f}")
|
||
|
||
# AIC/BIC for model comparison
|
||
print(f"AIC: {results.aic:.2f}")
|
||
print(f"BIC: {results.bic:.2f}")
|
||
|
||
# Log-likelihood
|
||
print(f"Log-likelihood: {results.llf:.2f}")
|
||
|
||
# Likelihood ratio test vs null model
|
||
lr_stat = 2 * (results.llf - results.llnull)
|
||
from scipy import stats
|
||
lr_pval = 1 - stats.chi2.cdf(lr_stat, results.df_model)
|
||
print(f"LR test p-value: {lr_pval}")
|
||
```
|
||
|
||
### Classification Metrics (Binary)
|
||
|
||
```python
|
||
from sklearn.metrics import (accuracy_score, precision_score, recall_score,
|
||
f1_score, roc_auc_score)
|
||
|
||
# Predictions
|
||
probs = results.predict(X)
|
||
predictions = (probs > 0.5).astype(int)
|
||
|
||
# Metrics
|
||
print(f"Accuracy: {accuracy_score(y, predictions):.4f}")
|
||
print(f"Precision: {precision_score(y, predictions):.4f}")
|
||
print(f"Recall: {recall_score(y, predictions):.4f}")
|
||
print(f"F1: {f1_score(y, predictions):.4f}")
|
||
print(f"AUC: {roc_auc_score(y, probs):.4f}")
|
||
```
|
||
|
||
### Classification Metrics (Multinomial)
|
||
|
||
```python
|
||
from sklearn.metrics import accuracy_score, classification_report, log_loss
|
||
|
||
# Predicted categories
|
||
probs = results.predict(X)
|
||
predictions = probs.argmax(axis=1)
|
||
|
||
# Accuracy
|
||
accuracy = accuracy_score(y, predictions)
|
||
print(f"Accuracy: {accuracy:.4f}")
|
||
|
||
# Classification report
|
||
print(classification_report(y, predictions))
|
||
|
||
# Log loss
|
||
logloss = log_loss(y, probs)
|
||
print(f"Log Loss: {logloss:.4f}")
|
||
```
|
||
|
||
### Count Model Diagnostics
|
||
|
||
```python
|
||
# Observed vs predicted frequencies
|
||
observed = pd.Series(y_counts).value_counts().sort_index()
|
||
predicted = results.predict(X)
|
||
predicted_counts = pd.Series(np.round(predicted)).value_counts().sort_index()
|
||
|
||
# Compare distributions
|
||
import matplotlib.pyplot as plt
|
||
fig, ax = plt.subplots()
|
||
observed.plot(kind='bar', alpha=0.5, label='Observed', ax=ax)
|
||
predicted_counts.plot(kind='bar', alpha=0.5, label='Predicted', ax=ax)
|
||
ax.legend()
|
||
ax.set_xlabel('Count')
|
||
ax.set_ylabel('Frequency')
|
||
plt.show()
|
||
|
||
# Rootogram (better visualization)
|
||
from statsmodels.graphics.agreement import mean_diff_plot
|
||
# Custom rootogram implementation needed
|
||
```
|
||
|
||
### Influence and Outliers
|
||
|
||
```python
|
||
# Standardized residuals
|
||
std_resid = (y - results.predict(X)) / np.sqrt(results.predict(X))
|
||
|
||
# Check for outliers (|std_resid| > 2)
|
||
outliers = np.where(np.abs(std_resid) > 2)[0]
|
||
print(f"Number of outliers: {len(outliers)}")
|
||
|
||
# Leverage (hat values) - for logit/probit
|
||
# from statsmodels.stats.outliers_influence
|
||
```
|
||
|
||
## Hypothesis Testing
|
||
|
||
```python
|
||
# Single parameter test (automatic in summary)
|
||
|
||
# Multiple parameters: Wald test
|
||
# Test H0: β₁ = β₂ = 0
|
||
R = [[0, 1, 0, 0], [0, 0, 1, 0]]
|
||
wald_test = results.wald_test(R)
|
||
print(wald_test)
|
||
|
||
# Likelihood ratio test for nested models
|
||
model_reduced = Logit(y, X_reduced).fit()
|
||
model_full = Logit(y, X_full).fit()
|
||
|
||
lr_stat = 2 * (model_full.llf - model_reduced.llf)
|
||
df = model_full.df_model - model_reduced.df_model
|
||
from scipy import stats
|
||
lr_pval = 1 - stats.chi2.cdf(lr_stat, df)
|
||
print(f"LR test p-value: {lr_pval:.4f}")
|
||
```
|
||
|
||
## Model Selection and Comparison
|
||
|
||
```python
|
||
# Fit multiple models
|
||
models = {
|
||
'Logit': Logit(y, X).fit(),
|
||
'Probit': Probit(y, X).fit(),
|
||
# Add more models
|
||
}
|
||
|
||
# Compare AIC/BIC
|
||
comparison = pd.DataFrame({
|
||
'AIC': {name: model.aic for name, model in models.items()},
|
||
'BIC': {name: model.bic for name, model in models.items()},
|
||
'Pseudo R²': {name: model.prsquared for name, model in models.items()}
|
||
})
|
||
print(comparison.sort_values('AIC'))
|
||
|
||
# Cross-validation for predictive performance
|
||
from sklearn.model_selection import cross_val_score
|
||
from sklearn.linear_model import LogisticRegression
|
||
|
||
# Use sklearn wrapper or manual CV
|
||
```
|
||
|
||
## Formula API
|
||
|
||
Use R-style formulas for easier specification.
|
||
|
||
```python
|
||
import statsmodels.formula.api as smf
|
||
|
||
# Logit with formula
|
||
formula = 'y ~ x1 + x2 + C(category) + x1:x2'
|
||
results = smf.logit(formula, data=df).fit()
|
||
|
||
# MNLogit with formula
|
||
results = smf.mnlogit(formula, data=df).fit()
|
||
|
||
# Poisson with formula
|
||
results = smf.poisson(formula, data=df).fit()
|
||
|
||
# Negative Binomial with formula
|
||
results = smf.negativebinomial(formula, data=df).fit()
|
||
```
|
||
|
||
## Common Applications
|
||
|
||
### Binary Classification (Marketing Response)
|
||
|
||
```python
|
||
# Predict customer purchase probability
|
||
X = sm.add_constant(customer_features)
|
||
model = Logit(purchased, X)
|
||
results = model.fit()
|
||
|
||
# Targeting: select top 20% likely to purchase
|
||
probs = results.predict(X)
|
||
top_20_pct_idx = np.argsort(probs)[-int(0.2*len(probs)):]
|
||
```
|
||
|
||
### Multinomial Choice (Transportation Mode)
|
||
|
||
```python
|
||
# Predict transportation mode choice
|
||
model = MNLogit(mode_choice, X)
|
||
results = model.fit()
|
||
|
||
# Predicted mode for new commuter
|
||
new_commuter = sm.add_constant(new_features)
|
||
mode_probs = results.predict(new_commuter)
|
||
predicted_mode = mode_probs.argmax(axis=1)
|
||
```
|
||
|
||
### Count Data (Number of Doctor Visits)
|
||
|
||
```python
|
||
# Model healthcare utilization
|
||
model = NegativeBinomial(num_visits, X)
|
||
results = model.fit()
|
||
|
||
# Expected visits for new patient
|
||
expected_visits = results.predict(new_patient_X)
|
||
```
|
||
|
||
### Zero-Inflated (Insurance Claims)
|
||
|
||
```python
|
||
# Many people have zero claims
|
||
# Zero-inflation: some never claim
|
||
# Count process: those who might claim
|
||
|
||
zip_model = ZeroInflatedPoisson(claims, X_count, exog_infl=X_inflation)
|
||
results = zip_model.fit()
|
||
|
||
# P(never file claim)
|
||
never_claim_prob = results.predict(X, which='prob-zero')
|
||
|
||
# Expected claims
|
||
expected_claims = results.predict(X, which='mean')
|
||
```
|
||
|
||
## Best Practices
|
||
|
||
1. **Check data type**: Ensure response matches model (binary, counts, categories)
|
||
2. **Add constant**: Always use `sm.add_constant()` unless no intercept desired
|
||
3. **Scale continuous predictors**: For better convergence and interpretation
|
||
4. **Check convergence**: Look for convergence warnings
|
||
5. **Use formula API**: For categorical variables and interactions
|
||
6. **Marginal effects**: Report marginal effects, not just coefficients
|
||
7. **Model comparison**: Use AIC/BIC and cross-validation
|
||
8. **Validate**: Holdout set or cross-validation for predictive models
|
||
9. **Check overdispersion**: For count models, test Poisson assumption
|
||
10. **Consider alternatives**: Zero-inflation, hurdle models for excess zeros
|
||
|
||
## Common Pitfalls
|
||
|
||
1. **Forgetting constant**: No intercept term
|
||
2. **Perfect separation**: Logit/probit may not converge
|
||
3. **Using Poisson with overdispersion**: Check and use Negative Binomial
|
||
4. **Misinterpreting coefficients**: Remember they're on log-odds/log scale
|
||
5. **Not checking convergence**: Optimization may fail silently
|
||
6. **Wrong distribution**: Match model to data type (binary/count/categorical)
|
||
7. **Ignoring excess zeros**: Use ZIP/ZINB when appropriate
|
||
8. **Not validating predictions**: Always check out-of-sample performance
|
||
9. **Comparing non-nested models**: Use AIC/BIC, not likelihood ratio test
|
||
10. **Ordinal as nominal**: Use OrderedModel for ordered categories
|