Files
2025-11-30 08:30:10 +08:00

246 lines
7.2 KiB
Python

"""
Template script for evaluating trained RL agents with Stable Baselines3.
This template demonstrates:
- Loading trained models
- Evaluating performance with statistics
- Recording videos of agent behavior
- Visualizing agent performance
"""
import gymnasium as gym
import numpy as np
from stable_baselines3 import PPO
from stable_baselines3.common.evaluation import evaluate_policy
from stable_baselines3.common.vec_env import DummyVecEnv, VecVideoRecorder, VecNormalize
import os
def evaluate_agent(
model_path,
env_id="CartPole-v1",
n_eval_episodes=10,
deterministic=True,
render=False,
record_video=False,
video_folder="./videos/",
vec_normalize_path=None,
):
"""
Evaluate a trained RL agent.
Args:
model_path: Path to the saved model
env_id: Gymnasium environment ID
n_eval_episodes: Number of episodes to evaluate
deterministic: Use deterministic actions
render: Render the environment during evaluation
record_video: Record videos of the agent
video_folder: Folder to save videos
vec_normalize_path: Path to VecNormalize statistics (if used during training)
Returns:
mean_reward: Mean episode reward
std_reward: Standard deviation of episode rewards
"""
# Load the trained model
print(f"Loading model from {model_path}...")
model = PPO.load(model_path)
# Create evaluation environment
if render:
env = gym.make(env_id, render_mode="human")
else:
env = gym.make(env_id)
# Wrap in DummyVecEnv for consistency
env = DummyVecEnv([lambda: env])
# Load VecNormalize statistics if they were used during training
if vec_normalize_path and os.path.exists(vec_normalize_path):
print(f"Loading VecNormalize statistics from {vec_normalize_path}...")
env = VecNormalize.load(vec_normalize_path, env)
env.training = False # Don't update statistics during evaluation
env.norm_reward = False # Don't normalize rewards during evaluation
# Set up video recording if requested
if record_video:
os.makedirs(video_folder, exist_ok=True)
env = VecVideoRecorder(
env,
video_folder,
record_video_trigger=lambda x: x == 0, # Record all episodes
video_length=1000, # Max video length
name_prefix=f"eval-{env_id}",
)
print(f"Recording videos to {video_folder}...")
# Evaluate the agent
print(f"Evaluating for {n_eval_episodes} episodes...")
mean_reward, std_reward = evaluate_policy(
model,
env,
n_eval_episodes=n_eval_episodes,
deterministic=deterministic,
render=False, # VecEnv doesn't support render parameter
return_episode_rewards=False,
)
print(f"Mean reward: {mean_reward:.2f} +/- {std_reward:.2f}")
# Cleanup
env.close()
return mean_reward, std_reward
def watch_agent(
model_path,
env_id="CartPole-v1",
n_episodes=5,
deterministic=True,
vec_normalize_path=None,
):
"""
Watch a trained agent play (with rendering).
Args:
model_path: Path to the saved model
env_id: Gymnasium environment ID
n_episodes: Number of episodes to watch
deterministic: Use deterministic actions
vec_normalize_path: Path to VecNormalize statistics (if used during training)
"""
# Load the trained model
print(f"Loading model from {model_path}...")
model = PPO.load(model_path)
# Create environment with rendering
env = gym.make(env_id, render_mode="human")
# Load VecNormalize statistics if needed
obs_normalization = None
if vec_normalize_path and os.path.exists(vec_normalize_path):
print(f"Loading VecNormalize statistics from {vec_normalize_path}...")
# For rendering, we'll manually apply normalization
dummy_env = DummyVecEnv([lambda: gym.make(env_id)])
vec_env = VecNormalize.load(vec_normalize_path, dummy_env)
obs_normalization = vec_env
dummy_env.close()
# Run episodes
for episode in range(n_episodes):
obs, info = env.reset()
episode_reward = 0
done = False
step = 0
print(f"\nEpisode {episode + 1}/{n_episodes}")
while not done:
# Apply observation normalization if needed
if obs_normalization:
obs_normalized = obs_normalization.normalize_obs(obs)
else:
obs_normalized = obs
# Get action from model
action, _states = model.predict(obs_normalized, deterministic=deterministic)
# Take step in environment
obs, reward, terminated, truncated, info = env.step(action)
done = terminated or truncated
episode_reward += reward
step += 1
print(f"Episode reward: {episode_reward:.2f} ({step} steps)")
env.close()
def compare_models(
model_paths,
env_id="CartPole-v1",
n_eval_episodes=10,
deterministic=True,
):
"""
Compare performance of multiple trained models.
Args:
model_paths: List of paths to saved models
env_id: Gymnasium environment ID
n_eval_episodes: Number of episodes to evaluate each model
deterministic: Use deterministic actions
"""
results = {}
for model_path in model_paths:
print(f"\nEvaluating {model_path}...")
mean_reward, std_reward = evaluate_agent(
model_path,
env_id=env_id,
n_eval_episodes=n_eval_episodes,
deterministic=deterministic,
)
results[model_path] = {"mean": mean_reward, "std": std_reward}
# Print comparison
print("\n" + "=" * 60)
print("Model Comparison Results")
print("=" * 60)
for model_path, stats in results.items():
print(f"{model_path}: {stats['mean']:.2f} +/- {stats['std']:.2f}")
print("=" * 60)
return results
if __name__ == "__main__":
# Example 1: Evaluate a trained model
model_path = "./models/best_model/best_model.zip"
evaluate_agent(
model_path=model_path,
env_id="CartPole-v1",
n_eval_episodes=10,
deterministic=True,
)
# Example 2: Record videos of agent behavior
# evaluate_agent(
# model_path=model_path,
# env_id="CartPole-v1",
# n_eval_episodes=5,
# deterministic=True,
# record_video=True,
# video_folder="./videos/",
# )
# Example 3: Watch agent play with rendering
# watch_agent(
# model_path=model_path,
# env_id="CartPole-v1",
# n_episodes=3,
# deterministic=True,
# )
# Example 4: Compare multiple models
# compare_models(
# model_paths=[
# "./models/model_100k.zip",
# "./models/model_200k.zip",
# "./models/best_model/best_model.zip",
# ],
# env_id="CartPole-v1",
# n_eval_episodes=10,
# )
# Example 5: Evaluate with VecNormalize statistics
# evaluate_agent(
# model_path="./models/best_model/best_model.zip",
# env_id="Pendulum-v1",
# n_eval_episodes=10,
# vec_normalize_path="./models/vec_normalize.pkl",
# )