7.2 KiB
SimPy Shared Resources
This guide covers all resource types in SimPy for modeling congestion points and resource allocation.
Resource Types Overview
SimPy provides three main categories of shared resources:
- Resources - Limited capacity resources (e.g., gas pumps, servers)
- Containers - Homogeneous bulk materials (e.g., fuel tanks, silos)
- Stores - Python object storage (e.g., item queues, warehouses)
1. Resources
Model resources that can be used by a limited number of processes at a time.
Resource (Basic)
The basic resource is a semaphore with specified capacity.
import simpy
env = simpy.Environment()
resource = simpy.Resource(env, capacity=2)
def process(env, resource, name):
with resource.request() as req:
yield req
print(f'{name} has the resource at {env.now}')
yield env.timeout(5)
print(f'{name} releases the resource at {env.now}')
env.process(process(env, resource, 'Process 1'))
env.process(process(env, resource, 'Process 2'))
env.process(process(env, resource, 'Process 3'))
env.run()
Key properties:
capacity- Maximum number of concurrent users (default: 1)count- Current number of usersqueue- List of queued requests
PriorityResource
Extends basic resource with priority levels (lower numbers = higher priority).
import simpy
env = simpy.Environment()
resource = simpy.PriorityResource(env, capacity=1)
def process(env, resource, name, priority):
with resource.request(priority=priority) as req:
yield req
print(f'{name} (priority {priority}) has the resource at {env.now}')
yield env.timeout(5)
env.process(process(env, resource, 'Low priority', priority=10))
env.process(process(env, resource, 'High priority', priority=1))
env.run()
Use cases:
- Emergency services (ambulances before regular vehicles)
- VIP customer queues
- Job scheduling with priorities
PreemptiveResource
Allows high-priority requests to interrupt lower-priority users.
import simpy
env = simpy.Environment()
resource = simpy.PreemptiveResource(env, capacity=1)
def process(env, resource, name, priority):
with resource.request(priority=priority) as req:
try:
yield req
print(f'{name} acquired resource at {env.now}')
yield env.timeout(10)
print(f'{name} finished at {env.now}')
except simpy.Interrupt:
print(f'{name} was preempted at {env.now}')
env.process(process(env, resource, 'Low priority', priority=10))
env.process(process(env, resource, 'High priority', priority=1))
env.run()
Use cases:
- Operating system CPU scheduling
- Emergency room triage
- Network packet prioritization
2. Containers
Model production and consumption of homogeneous bulk materials (continuous or discrete).
import simpy
env = simpy.Environment()
container = simpy.Container(env, capacity=100, init=50)
def producer(env, container):
while True:
yield env.timeout(5)
yield container.put(20)
print(f'Produced 20. Level: {container.level}')
def consumer(env, container):
while True:
yield env.timeout(7)
yield container.get(15)
print(f'Consumed 15. Level: {container.level}')
env.process(producer(env, container))
env.process(consumer(env, container))
env.run(until=50)
Key properties:
capacity- Maximum amount (default: float('inf'))level- Current amountinit- Initial amount (default: 0)
Operations:
put(amount)- Add to container (blocks if full)get(amount)- Remove from container (blocks if insufficient)
Use cases:
- Gas station fuel tanks
- Buffer storage in manufacturing
- Water reservoirs
- Battery charge levels
3. Stores
Model production and consumption of Python objects.
Store (Basic)
Generic FIFO object storage.
import simpy
env = simpy.Environment()
store = simpy.Store(env, capacity=2)
def producer(env, store):
for i in range(5):
yield env.timeout(2)
item = f'Item {i}'
yield store.put(item)
print(f'Produced {item} at {env.now}')
def consumer(env, store):
while True:
yield env.timeout(3)
item = yield store.get()
print(f'Consumed {item} at {env.now}')
env.process(producer(env, store))
env.process(consumer(env, store))
env.run()
Key properties:
capacity- Maximum number of items (default: float('inf'))items- List of stored items
Operations:
put(item)- Add item to store (blocks if full)get()- Remove and return item (blocks if empty)
FilterStore
Allows retrieval of specific objects based on filter functions.
import simpy
env = simpy.Environment()
store = simpy.FilterStore(env, capacity=10)
def producer(env, store):
for color in ['red', 'blue', 'green', 'red', 'blue']:
yield env.timeout(1)
yield store.put({'color': color, 'time': env.now})
print(f'Produced {color} item at {env.now}')
def consumer(env, store, color):
while True:
yield env.timeout(2)
item = yield store.get(lambda x: x['color'] == color)
print(f'{color} consumer got item from {item["time"]} at {env.now}')
env.process(producer(env, store))
env.process(consumer(env, store, 'red'))
env.process(consumer(env, store, 'blue'))
env.run(until=15)
Use cases:
- Warehouse item picking (specific SKUs)
- Job queues with skill matching
- Packet routing by destination
PriorityStore
Items retrieved in priority order (lowest first).
import simpy
class PriorityItem:
def __init__(self, priority, data):
self.priority = priority
self.data = data
def __lt__(self, other):
return self.priority < other.priority
env = simpy.Environment()
store = simpy.PriorityStore(env, capacity=10)
def producer(env, store):
items = [(10, 'Low'), (1, 'High'), (5, 'Medium')]
for priority, name in items:
yield env.timeout(1)
yield store.put(PriorityItem(priority, name))
print(f'Produced {name} priority item')
def consumer(env, store):
while True:
yield env.timeout(5)
item = yield store.get()
print(f'Retrieved {item.data} priority item')
env.process(producer(env, store))
env.process(consumer(env, store))
env.run()
Use cases:
- Task scheduling
- Print job queues
- Message prioritization
Choosing the Right Resource Type
| Scenario | Resource Type |
|---|---|
| Limited servers/machines | Resource |
| Priority-based queuing | PriorityResource |
| Preemptive scheduling | PreemptiveResource |
| Fuel, water, bulk materials | Container |
| Generic item queue (FIFO) | Store |
| Selective item retrieval | FilterStore |
| Priority-ordered items | PriorityStore |
Best Practices
- Capacity planning: Set realistic capacities based on system constraints
- Request patterns: Use context managers (
with resource.request()) for automatic cleanup - Error handling: Wrap preemptive resources in try-except for Interrupt handling
- Monitoring: Track queue lengths and utilization (see monitoring.md)
- Performance: FilterStore and PriorityStore have O(n) retrieval time; use wisely for large stores