Files
2025-11-30 08:30:10 +08:00

14 KiB

Logging - Comprehensive Guide

Overview

PyTorch Lightning supports multiple logging integrations for experiment tracking and visualization. By default, Lightning uses TensorBoard, but you can easily switch to or combine multiple loggers.

Supported Loggers

TensorBoardLogger (Default)

Logs to local or remote file system in TensorBoard format.

Installation:

pip install tensorboard

Usage:

from lightning.pytorch import loggers as pl_loggers

tb_logger = pl_loggers.TensorBoardLogger(
    save_dir="logs/",
    name="my_model",
    version="version_1",
    default_hp_metric=False
)

trainer = L.Trainer(logger=tb_logger)

View logs:

tensorboard --logdir logs/

WandbLogger

Weights & Biases integration for cloud-based experiment tracking.

Installation:

pip install wandb

Usage:

from lightning.pytorch import loggers as pl_loggers

wandb_logger = pl_loggers.WandbLogger(
    project="my-project",
    name="experiment-1",
    save_dir="logs/",
    log_model=True  # Log model checkpoints to W&B
)

trainer = L.Trainer(logger=wandb_logger)

Features:

  • Cloud-based experiment tracking
  • Model versioning
  • Artifact management
  • Collaborative features
  • Hyperparameter sweeps

MLFlowLogger

MLflow tracking integration.

Installation:

pip install mlflow

Usage:

from lightning.pytorch import loggers as pl_loggers

mlflow_logger = pl_loggers.MLFlowLogger(
    experiment_name="my_experiment",
    tracking_uri="http://localhost:5000",
    run_name="run_1"
)

trainer = L.Trainer(logger=mlflow_logger)

CometLogger

Comet.ml experiment tracking.

Installation:

pip install comet-ml

Usage:

from lightning.pytorch import loggers as pl_loggers

comet_logger = pl_loggers.CometLogger(
    api_key="YOUR_API_KEY",
    project_name="my-project",
    experiment_name="experiment-1"
)

trainer = L.Trainer(logger=comet_logger)

NeptuneLogger

Neptune.ai integration.

Installation:

pip install neptune

Usage:

from lightning.pytorch import loggers as pl_loggers

neptune_logger = pl_loggers.NeptuneLogger(
    api_key="YOUR_API_KEY",
    project="username/project-name",
    name="experiment-1"
)

trainer = L.Trainer(logger=neptune_logger)

CSVLogger

Log to local file system in YAML and CSV format.

Usage:

from lightning.pytorch import loggers as pl_loggers

csv_logger = pl_loggers.CSVLogger(
    save_dir="logs/",
    name="my_model",
    version="1"
)

trainer = L.Trainer(logger=csv_logger)

Output files:

  • metrics.csv - All logged metrics
  • hparams.yaml - Hyperparameters

Logging Metrics

Basic Logging

Use self.log() within your LightningModule:

class MyModel(L.LightningModule):
    def training_step(self, batch, batch_idx):
        x, y = batch
        y_hat = self.model(x)
        loss = F.cross_entropy(y_hat, y)

        # Log metric
        self.log("train_loss", loss)

        return loss

    def validation_step(self, batch, batch_idx):
        x, y = batch
        y_hat = self.model(x)
        loss = F.cross_entropy(y_hat, y)
        acc = (y_hat.argmax(dim=1) == y).float().mean()

        # Log multiple metrics
        self.log("val_loss", loss)
        self.log("val_acc", acc)

Logging Parameters

on_step (bool)

Log at current step. Default: True in training_step, False otherwise.

self.log("loss", loss, on_step=True)

on_epoch (bool)

Accumulate and log at epoch end. Default: False in training_step, True otherwise.

self.log("loss", loss, on_epoch=True)

prog_bar (bool)

Display in progress bar. Default: False.

self.log("train_loss", loss, prog_bar=True)

logger (bool)

Send to logger backends. Default: True.

self.log("internal_metric", value, logger=False)  # Don't log to external logger

reduce_fx (str or callable)

Reduction function: "mean", "sum", "max", "min". Default: "mean".

self.log("batch_size", batch.size(0), reduce_fx="sum")

sync_dist (bool)

Synchronize metric across devices in distributed training. Default: False.

self.log("loss", loss, sync_dist=True)

rank_zero_only (bool)

Only log from rank 0 process. Default: False.

self.log("debug_metric", value, rank_zero_only=True)

Complete Example

def training_step(self, batch, batch_idx):
    loss = self.compute_loss(batch)

    # Log per-step and per-epoch, display in progress bar
    self.log("train_loss", loss, on_step=True, on_epoch=True, prog_bar=True)

    return loss

def validation_step(self, batch, batch_idx):
    loss = self.compute_loss(batch)
    acc = self.compute_accuracy(batch)

    # Log epoch-level metrics
    self.log("val_loss", loss, on_epoch=True)
    self.log("val_acc", acc, on_epoch=True, prog_bar=True)

Logging Multiple Metrics

Use log_dict() to log multiple metrics at once:

def training_step(self, batch, batch_idx):
    loss, acc, f1 = self.compute_metrics(batch)

    metrics = {
        "train_loss": loss,
        "train_acc": acc,
        "train_f1": f1
    }

    self.log_dict(metrics, on_step=True, on_epoch=True)

    return loss

Logging Hyperparameters

Automatic Hyperparameter Logging

Use save_hyperparameters() in your model:

class MyModel(L.LightningModule):
    def __init__(self, learning_rate, hidden_dim, dropout):
        super().__init__()
        # Automatically save and log hyperparameters
        self.save_hyperparameters()

Manual Hyperparameter Logging

# In LightningModule
class MyModel(L.LightningModule):
    def __init__(self, learning_rate):
        super().__init__()
        self.save_hyperparameters()

# Or manually with logger
trainer.logger.log_hyperparams({
    "learning_rate": 0.001,
    "batch_size": 32
})

Logging Frequency

By default, Lightning logs every 50 training steps. Adjust with log_every_n_steps:

trainer = L.Trainer(log_every_n_steps=10)

Multiple Loggers

Use multiple loggers simultaneously:

from lightning.pytorch import loggers as pl_loggers

tb_logger = pl_loggers.TensorBoardLogger("logs/")
wandb_logger = pl_loggers.WandbLogger(project="my-project")
csv_logger = pl_loggers.CSVLogger("logs/")

trainer = L.Trainer(logger=[tb_logger, wandb_logger, csv_logger])

Advanced Logging

Logging Images

import torchvision

def validation_step(self, batch, batch_idx):
    x, y = batch
    y_hat = self.model(x)

    # Log first batch of images once per epoch
    if batch_idx == 0:
        # Create image grid
        grid = torchvision.utils.make_grid(x[:8])

        # Log to TensorBoard
        self.logger.experiment.add_image("val_images", grid, self.current_epoch)

        # Log to Wandb
        if isinstance(self.logger, pl_loggers.WandbLogger):
            import wandb
            self.logger.experiment.log({
                "val_images": [wandb.Image(img) for img in x[:8]]
            })

Logging Histograms

def on_train_epoch_end(self):
    # Log parameter histograms
    for name, param in self.named_parameters():
        self.logger.experiment.add_histogram(name, param, self.current_epoch)

        if param.grad is not None:
            self.logger.experiment.add_histogram(
                f"{name}_grad", param.grad, self.current_epoch
            )

Logging Model Graph

def on_train_start(self):
    # Log model architecture
    sample_input = torch.randn(1, 3, 224, 224).to(self.device)
    self.logger.experiment.add_graph(self.model, sample_input)

Logging Custom Plots

import matplotlib.pyplot as plt

def on_validation_epoch_end(self):
    # Create custom plot
    fig, ax = plt.subplots()
    ax.plot(self.validation_losses)
    ax.set_xlabel("Epoch")
    ax.set_ylabel("Loss")

    # Log to TensorBoard
    self.logger.experiment.add_figure("loss_curve", fig, self.current_epoch)

    plt.close(fig)

Logging Text

def validation_step(self, batch, batch_idx):
    # Generate predictions
    predictions = self.generate_text(batch)

    # Log to TensorBoard
    self.logger.experiment.add_text(
        "predictions",
        f"Batch {batch_idx}: {predictions}",
        self.current_epoch
    )

Logging Audio

def validation_step(self, batch, batch_idx):
    audio = self.generate_audio(batch)

    # Log to TensorBoard (audio is tensor of shape [1, samples])
    self.logger.experiment.add_audio(
        "generated_audio",
        audio,
        self.current_epoch,
        sample_rate=22050
    )

Accessing Logger in LightningModule

class MyModel(L.LightningModule):
    def training_step(self, batch, batch_idx):
        # Access logger experiment object
        logger = self.logger.experiment

        # For TensorBoard
        if isinstance(self.logger, pl_loggers.TensorBoardLogger):
            logger.add_scalar("custom_metric", value, self.global_step)

        # For Wandb
        if isinstance(self.logger, pl_loggers.WandbLogger):
            logger.log({"custom_metric": value})

        # For MLflow
        if isinstance(self.logger, pl_loggers.MLFlowLogger):
            logger.log_metric("custom_metric", value)

Custom Logger

Create a custom logger by inheriting from Logger:

from lightning.pytorch.loggers import Logger
from lightning.pytorch.utilities import rank_zero_only

class MyCustomLogger(Logger):
    def __init__(self, save_dir):
        super().__init__()
        self.save_dir = save_dir
        self._name = "my_logger"
        self._version = "0.1"

    @property
    def name(self):
        return self._name

    @property
    def version(self):
        return self._version

    @rank_zero_only
    def log_metrics(self, metrics, step):
        # Log metrics to your backend
        print(f"Step {step}: {metrics}")

    @rank_zero_only
    def log_hyperparams(self, params):
        # Log hyperparameters
        print(f"Hyperparameters: {params}")

    @rank_zero_only
    def save(self):
        # Save logger state
        pass

    @rank_zero_only
    def finalize(self, status):
        # Cleanup when training ends
        pass

# Usage
custom_logger = MyCustomLogger(save_dir="logs/")
trainer = L.Trainer(logger=custom_logger)

Best Practices

1. Log Both Step and Epoch Metrics

# Good: Track both granular and aggregate metrics
self.log("train_loss", loss, on_step=True, on_epoch=True)

2. Use Progress Bar for Key Metrics

# Show important metrics in progress bar
self.log("val_acc", acc, prog_bar=True)

3. Synchronize Metrics in Distributed Training

# Ensure correct aggregation across GPUs
self.log("val_loss", loss, sync_dist=True)

4. Log Learning Rate

from lightning.pytorch.callbacks import LearningRateMonitor

trainer = L.Trainer(callbacks=[LearningRateMonitor(logging_interval="step")])

5. Log Gradient Norms

def on_after_backward(self):
    # Monitor gradient flow
    grad_norm = torch.nn.utils.clip_grad_norm_(self.parameters(), max_norm=float('inf'))
    self.log("grad_norm", grad_norm)

6. Use Descriptive Metric Names

# Good: Clear naming convention
self.log("train/loss", loss)
self.log("train/accuracy", acc)
self.log("val/loss", val_loss)
self.log("val/accuracy", val_acc)

7. Log Hyperparameters

# Always save hyperparameters for reproducibility
class MyModel(L.LightningModule):
    def __init__(self, **kwargs):
        super().__init__()
        self.save_hyperparameters()

8. Don't Log Too Frequently

# Avoid logging every step for expensive operations
if batch_idx % 100 == 0:
    self.log_images(batch)

Common Patterns

Structured Logging

def training_step(self, batch, batch_idx):
    loss, metrics = self.compute_loss_and_metrics(batch)

    # Organize logs with prefixes
    self.log("train/loss", loss)
    self.log_dict({f"train/{k}": v for k, v in metrics.items()})

    return loss

def validation_step(self, batch, batch_idx):
    loss, metrics = self.compute_loss_and_metrics(batch)

    self.log("val/loss", loss)
    self.log_dict({f"val/{k}": v for k, v in metrics.items()})

Conditional Logging

def training_step(self, batch, batch_idx):
    loss = self.compute_loss(batch)

    # Log expensive metrics less frequently
    if self.global_step % 100 == 0:
        expensive_metric = self.compute_expensive_metric(batch)
        self.log("expensive_metric", expensive_metric)

    self.log("train_loss", loss)
    return loss

Multi-Task Logging

def training_step(self, batch, batch_idx):
    x, y_task1, y_task2 = batch

    loss_task1 = self.compute_task1_loss(x, y_task1)
    loss_task2 = self.compute_task2_loss(x, y_task2)
    total_loss = loss_task1 + loss_task2

    # Log per-task metrics
    self.log_dict({
        "train/loss_task1": loss_task1,
        "train/loss_task2": loss_task2,
        "train/loss_total": total_loss
    })

    return total_loss

Troubleshooting

Metric Not Found Error

If you get "metric not found" errors with schedulers:

# Make sure metric is logged with logger=True
self.log("val_loss", loss, logger=True)

# And configure scheduler to monitor it
def configure_optimizers(self):
    optimizer = torch.optim.Adam(self.parameters())
    scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer)
    return {
        "optimizer": optimizer,
        "lr_scheduler": {
            "scheduler": scheduler,
            "monitor": "val_loss"  # Must match logged metric name
        }
    }

Metrics Not Syncing in Distributed Training

# Enable sync_dist for proper aggregation
self.log("val_acc", acc, sync_dist=True)

Logger Not Saving

# Ensure logger has write permissions
trainer = L.Trainer(
    logger=pl_loggers.TensorBoardLogger("logs/"),
    default_root_dir="outputs/"  # Ensure directory exists and is writable
)