60 lines
1.6 KiB
Python
60 lines
1.6 KiB
Python
"""
|
|
Single-objective optimization example using pymoo.
|
|
|
|
This script demonstrates basic single-objective optimization
|
|
using the Genetic Algorithm on the Sphere function.
|
|
"""
|
|
|
|
from pymoo.algorithms.soo.nonconvex.ga import GA
|
|
from pymoo.problems import get_problem
|
|
from pymoo.optimize import minimize
|
|
from pymoo.operators.crossover.sbx import SBX
|
|
from pymoo.operators.mutation.pm import PM
|
|
from pymoo.operators.sampling.rnd import FloatRandomSampling
|
|
from pymoo.termination import get_termination
|
|
import numpy as np
|
|
|
|
|
|
def run_single_objective_optimization():
|
|
"""Run single-objective optimization example."""
|
|
|
|
# Define the problem - Sphere function (sum of squares)
|
|
problem = get_problem("sphere", n_var=10)
|
|
|
|
# Configure the algorithm
|
|
algorithm = GA(
|
|
pop_size=100,
|
|
sampling=FloatRandomSampling(),
|
|
crossover=SBX(prob=0.9, eta=15),
|
|
mutation=PM(eta=20),
|
|
eliminate_duplicates=True
|
|
)
|
|
|
|
# Define termination criteria
|
|
termination = get_termination("n_gen", 100)
|
|
|
|
# Run optimization
|
|
result = minimize(
|
|
problem,
|
|
algorithm,
|
|
termination,
|
|
seed=1,
|
|
verbose=True
|
|
)
|
|
|
|
# Print results
|
|
print("\n" + "="*60)
|
|
print("OPTIMIZATION RESULTS")
|
|
print("="*60)
|
|
print(f"Best solution: {result.X}")
|
|
print(f"Best objective value: {result.F[0]:.6f}")
|
|
print(f"Number of generations: {result.algorithm.n_gen}")
|
|
print(f"Number of function evaluations: {result.algorithm.evaluator.n_eval}")
|
|
print("="*60)
|
|
|
|
return result
|
|
|
|
|
|
if __name__ == "__main__":
|
|
result = run_single_objective_optimization()
|