14 KiB
14 KiB
OMERO Tables
This reference covers creating and managing structured tabular data in OMERO using OMERO.tables.
OMERO.tables Overview
OMERO.tables provides a way to store structured tabular data associated with OMERO objects. Tables are stored as HDF5 files and can be queried efficiently. Common use cases include:
- Storing quantitative measurements from images
- Recording analysis results
- Tracking experimental metadata
- Linking measurements to specific images or ROIs
Column Types
OMERO.tables supports various column types:
- LongColumn: Integer values (64-bit)
- DoubleColumn: Floating-point values
- StringColumn: Text data (fixed max length)
- BoolColumn: Boolean values
- LongArrayColumn: Arrays of integers
- DoubleArrayColumn: Arrays of floats
- FileColumn: References to OMERO files
- ImageColumn: References to OMERO images
- RoiColumn: References to OMERO ROIs
- WellColumn: References to OMERO wells
Creating Tables
Basic Table Creation
from random import random
import omero.grid
# Create unique table name
table_name = f"MyAnalysisTable_{random()}"
# Define columns (empty data for initialization)
col1 = omero.grid.LongColumn('ImageID', 'Image identifier', [])
col2 = omero.grid.DoubleColumn('MeanIntensity', 'Mean pixel intensity', [])
col3 = omero.grid.StringColumn('Category', 'Classification', 64, [])
columns = [col1, col2, col3]
# Get resources and create table
resources = conn.c.sf.sharedResources()
repository_id = resources.repositories().descriptions[0].getId().getValue()
table = resources.newTable(repository_id, table_name)
# Initialize table with column definitions
table.initialize(columns)
Add Data to Table
# Prepare data
image_ids = [1, 2, 3, 4, 5]
intensities = [123.4, 145.2, 98.7, 156.3, 132.8]
categories = ["Good", "Good", "Poor", "Excellent", "Good"]
# Create data columns
data_col1 = omero.grid.LongColumn('ImageID', 'Image identifier', image_ids)
data_col2 = omero.grid.DoubleColumn('MeanIntensity', 'Mean pixel intensity', intensities)
data_col3 = omero.grid.StringColumn('Category', 'Classification', 64, categories)
data = [data_col1, data_col2, data_col3]
# Add data to table
table.addData(data)
# Get file reference
orig_file = table.getOriginalFile()
table.close() # Always close table when done
Link Table to Dataset
# Create file annotation from table
orig_file_id = orig_file.id.val
file_ann = omero.model.FileAnnotationI()
file_ann.setFile(omero.model.OriginalFileI(orig_file_id, False))
file_ann = conn.getUpdateService().saveAndReturnObject(file_ann)
# Link to dataset
link = omero.model.DatasetAnnotationLinkI()
link.setParent(omero.model.DatasetI(dataset_id, False))
link.setChild(omero.model.FileAnnotationI(file_ann.getId().getValue(), False))
conn.getUpdateService().saveAndReturnObject(link)
print(f"Linked table to dataset {dataset_id}")
Column Types in Detail
Long Column (Integers)
# Column for integer values
image_ids = [101, 102, 103, 104, 105]
col = omero.grid.LongColumn('ImageID', 'Image identifier', image_ids)
Double Column (Floats)
# Column for floating-point values
measurements = [12.34, 56.78, 90.12, 34.56, 78.90]
col = omero.grid.DoubleColumn('Measurement', 'Value in microns', measurements)
String Column (Text)
# Column for text (max length required)
labels = ["Control", "Treatment A", "Treatment B", "Control", "Treatment A"]
col = omero.grid.StringColumn('Condition', 'Experimental condition', 64, labels)
Boolean Column
# Column for boolean values
flags = [True, False, True, True, False]
col = omero.grid.BoolColumn('QualityPass', 'Passes quality control', flags)
Image Column (References to Images)
# Column linking to OMERO images
image_ids = [101, 102, 103, 104, 105]
col = omero.grid.ImageColumn('Image', 'Source image', image_ids)
ROI Column (References to ROIs)
# Column linking to OMERO ROIs
roi_ids = [201, 202, 203, 204, 205]
col = omero.grid.RoiColumn('ROI', 'Associated ROI', roi_ids)
Array Columns
# Column for arrays of doubles
histogram_data = [
[10, 20, 30, 40],
[15, 25, 35, 45],
[12, 22, 32, 42]
]
col = omero.grid.DoubleArrayColumn('Histogram', 'Intensity histogram', histogram_data)
# Column for arrays of longs
bin_counts = [[5, 10, 15], [8, 12, 16], [6, 11, 14]]
col = omero.grid.LongArrayColumn('Bins', 'Histogram bins', bin_counts)
Reading Table Data
Open Existing Table
# Get table file by name
orig_table_file = conn.getObject("OriginalFile",
attributes={'name': table_name})
# Open table
resources = conn.c.sf.sharedResources()
table = resources.openTable(orig_table_file._obj)
print(f"Opened table: {table.getOriginalFile().getName().getValue()}")
print(f"Number of rows: {table.getNumberOfRows()}")
Read All Data
# Get column headers
print("Columns:")
for col in table.getHeaders():
print(f" {col.name}: {col.description}")
# Read all data
row_count = table.getNumberOfRows()
data = table.readCoordinates(range(row_count))
# Display data
for col in data.columns:
print(f"\nColumn: {col.name}")
for value in col.values:
print(f" {value}")
table.close()
Read Specific Rows
# Read rows 10-20
start = 10
stop = 20
data = table.read(list(range(table.getHeaders().__len__())), start, stop)
for col in data.columns:
print(f"Column: {col.name}")
for value in col.values:
print(f" {value}")
Read Specific Columns
# Read only columns 0 and 2
column_indices = [0, 2]
start = 0
stop = table.getNumberOfRows()
data = table.read(column_indices, start, stop)
for col in data.columns:
print(f"Column: {col.name}")
print(f"Values: {col.values}")
Querying Tables
Query with Conditions
# Query rows where MeanIntensity > 100
row_count = table.getNumberOfRows()
query_rows = table.getWhereList(
"(MeanIntensity > 100)",
variables={},
start=0,
stop=row_count,
step=0
)
print(f"Found {len(query_rows)} matching rows")
# Read matching rows
data = table.readCoordinates(query_rows)
for col in data.columns:
print(f"\n{col.name}:")
for value in col.values:
print(f" {value}")
Complex Queries
# Multiple conditions with AND
query_rows = table.getWhereList(
"(MeanIntensity > 100) & (MeanIntensity < 150)",
variables={},
start=0,
stop=row_count,
step=0
)
# Multiple conditions with OR
query_rows = table.getWhereList(
"(Category == 'Good') | (Category == 'Excellent')",
variables={},
start=0,
stop=row_count,
step=0
)
# String matching
query_rows = table.getWhereList(
"(Category == 'Good')",
variables={},
start=0,
stop=row_count,
step=0
)
Complete Example: Image Analysis Results
from omero.gateway import BlitzGateway
import omero.grid
import omero.model
import numpy as np
HOST = 'omero.example.com'
PORT = 4064
USERNAME = 'user'
PASSWORD = 'pass'
with BlitzGateway(USERNAME, PASSWORD, host=HOST, port=PORT) as conn:
# Get dataset
dataset = conn.getObject("Dataset", dataset_id)
print(f"Analyzing dataset: {dataset.getName()}")
# Collect measurements from images
image_ids = []
mean_intensities = []
max_intensities = []
cell_counts = []
for image in dataset.listChildren():
image_ids.append(image.getId())
# Get pixel data
pixels = image.getPrimaryPixels()
plane = pixels.getPlane(0, 0, 0) # Z=0, C=0, T=0
# Calculate statistics
mean_intensities.append(float(np.mean(plane)))
max_intensities.append(float(np.max(plane)))
# Simulate cell count (would be from actual analysis)
cell_counts.append(np.random.randint(50, 200))
# Create table
table_name = f"Analysis_Results_{dataset.getId()}"
# Define columns
col1 = omero.grid.ImageColumn('Image', 'Source image', [])
col2 = omero.grid.DoubleColumn('MeanIntensity', 'Mean pixel value', [])
col3 = omero.grid.DoubleColumn('MaxIntensity', 'Maximum pixel value', [])
col4 = omero.grid.LongColumn('CellCount', 'Number of cells detected', [])
# Initialize table
resources = conn.c.sf.sharedResources()
repository_id = resources.repositories().descriptions[0].getId().getValue()
table = resources.newTable(repository_id, table_name)
table.initialize([col1, col2, col3, col4])
# Add data
data_col1 = omero.grid.ImageColumn('Image', 'Source image', image_ids)
data_col2 = omero.grid.DoubleColumn('MeanIntensity', 'Mean pixel value',
mean_intensities)
data_col3 = omero.grid.DoubleColumn('MaxIntensity', 'Maximum pixel value',
max_intensities)
data_col4 = omero.grid.LongColumn('CellCount', 'Number of cells detected',
cell_counts)
table.addData([data_col1, data_col2, data_col3, data_col4])
# Get file and close table
orig_file = table.getOriginalFile()
table.close()
# Link to dataset
orig_file_id = orig_file.id.val
file_ann = omero.model.FileAnnotationI()
file_ann.setFile(omero.model.OriginalFileI(orig_file_id, False))
file_ann = conn.getUpdateService().saveAndReturnObject(file_ann)
link = omero.model.DatasetAnnotationLinkI()
link.setParent(omero.model.DatasetI(dataset_id, False))
link.setChild(omero.model.FileAnnotationI(file_ann.getId().getValue(), False))
conn.getUpdateService().saveAndReturnObject(link)
print(f"Created and linked table with {len(image_ids)} rows")
# Query results
table = resources.openTable(orig_file)
high_cell_count_rows = table.getWhereList(
"(CellCount > 100)",
variables={},
start=0,
stop=table.getNumberOfRows(),
step=0
)
print(f"Images with >100 cells: {len(high_cell_count_rows)}")
# Read those rows
data = table.readCoordinates(high_cell_count_rows)
for i in range(len(high_cell_count_rows)):
img_id = data.columns[0].values[i]
count = data.columns[3].values[i]
print(f" Image {img_id}: {count} cells")
table.close()
Retrieve Tables from Objects
Find Tables Attached to Dataset
# Get dataset
dataset = conn.getObject("Dataset", dataset_id)
# List file annotations
for ann in dataset.listAnnotations():
if isinstance(ann, omero.gateway.FileAnnotationWrapper):
file_obj = ann.getFile()
file_name = file_obj.getName()
# Check if it's a table (might have specific naming pattern)
if "Table" in file_name or file_name.endswith(".h5"):
print(f"Found table: {file_name} (ID: {file_obj.getId()})")
# Open and inspect
resources = conn.c.sf.sharedResources()
table = resources.openTable(file_obj._obj)
print(f" Rows: {table.getNumberOfRows()}")
print(f" Columns:")
for col in table.getHeaders():
print(f" {col.name}")
table.close()
Updating Tables
Append Rows
# Open existing table
resources = conn.c.sf.sharedResources()
table = resources.openTable(orig_file._obj)
# Prepare new data
new_image_ids = [106, 107]
new_intensities = [88.9, 92.3]
new_categories = ["Good", "Excellent"]
# Create data columns
data_col1 = omero.grid.LongColumn('ImageID', '', new_image_ids)
data_col2 = omero.grid.DoubleColumn('MeanIntensity', '', new_intensities)
data_col3 = omero.grid.StringColumn('Category', '', 64, new_categories)
# Append data
table.addData([data_col1, data_col2, data_col3])
print(f"New row count: {table.getNumberOfRows()}")
table.close()
Deleting Tables
Delete Table File
# Get file object
orig_file = conn.getObject("OriginalFile", file_id)
# Delete file (also deletes table)
conn.deleteObjects("OriginalFile", [file_id], wait=True)
print(f"Deleted table file {file_id}")
Unlink Table from Object
# Find annotation links
dataset = conn.getObject("Dataset", dataset_id)
for ann in dataset.listAnnotations():
if isinstance(ann, omero.gateway.FileAnnotationWrapper):
if "Table" in ann.getFile().getName():
# Delete link (keeps table, removes association)
conn.deleteObjects("DatasetAnnotationLink",
[ann.link.getId()],
wait=True)
print(f"Unlinked table from dataset")
Best Practices
- Descriptive Names: Use meaningful table and column names
- Close Tables: Always close tables after use
- String Length: Set appropriate max length for string columns
- Link to Objects: Attach tables to relevant datasets or projects
- Use References: Use ImageColumn, RoiColumn for object references
- Query Efficiently: Use getWhereList() instead of reading all data
- Document: Add descriptions to columns
- Version Control: Include version info in table name or metadata
- Batch Operations: Add data in batches for better performance
- Error Handling: Check for None returns and handle exceptions
Common Patterns
ROI Measurements Table
# Table structure for ROI measurements
columns = [
omero.grid.ImageColumn('Image', 'Source image', []),
omero.grid.RoiColumn('ROI', 'Measured ROI', []),
omero.grid.LongColumn('ChannelIndex', 'Channel number', []),
omero.grid.DoubleColumn('Area', 'ROI area in pixels', []),
omero.grid.DoubleColumn('MeanIntensity', 'Mean intensity', []),
omero.grid.DoubleColumn('IntegratedDensity', 'Sum of intensities', []),
omero.grid.StringColumn('CellType', 'Cell classification', 32, [])
]
Time Series Data Table
# Table structure for time series measurements
columns = [
omero.grid.ImageColumn('Image', 'Time series image', []),
omero.grid.LongColumn('Timepoint', 'Time index', []),
omero.grid.DoubleColumn('Timestamp', 'Time in seconds', []),
omero.grid.DoubleColumn('Value', 'Measured value', []),
omero.grid.StringColumn('Measurement', 'Type of measurement', 64, [])
]
Screening Results Table
# Table structure for screening plate analysis
columns = [
omero.grid.WellColumn('Well', 'Plate well', []),
omero.grid.LongColumn('FieldIndex', 'Field number', []),
omero.grid.DoubleColumn('CellCount', 'Number of cells', []),
omero.grid.DoubleColumn('Viability', 'Percent viable', []),
omero.grid.StringColumn('Phenotype', 'Observed phenotype', 128, []),
omero.grid.BoolColumn('Hit', 'Hit in screen', [])
]