262 lines
5.3 KiB
Markdown
262 lines
5.3 KiB
Markdown
# Modal Images
|
|
|
|
## Overview
|
|
|
|
Modal Images define the environment code runs in - containers with dependencies installed. Images are built from method chains starting from a base image.
|
|
|
|
## Base Images
|
|
|
|
Start with a base image and chain methods:
|
|
|
|
```python
|
|
image = (
|
|
modal.Image.debian_slim(python_version="3.13")
|
|
.apt_install("git")
|
|
.uv_pip_install("torch<3")
|
|
.env({"HALT_AND_CATCH_FIRE": "0"})
|
|
.run_commands("git clone https://github.com/modal-labs/agi")
|
|
)
|
|
```
|
|
|
|
Available base images:
|
|
- `Image.debian_slim()` - Debian Linux with Python
|
|
- `Image.micromamba()` - Base with Micromamba package manager
|
|
- `Image.from_registry()` - Pull from Docker Hub, ECR, etc.
|
|
- `Image.from_dockerfile()` - Build from existing Dockerfile
|
|
|
|
## Installing Python Packages
|
|
|
|
### With uv (Recommended)
|
|
|
|
Use `.uv_pip_install()` for fast package installation:
|
|
|
|
```python
|
|
image = (
|
|
modal.Image.debian_slim()
|
|
.uv_pip_install("pandas==2.2.0", "numpy")
|
|
)
|
|
```
|
|
|
|
### With pip
|
|
|
|
Fallback to standard pip if needed:
|
|
|
|
```python
|
|
image = (
|
|
modal.Image.debian_slim(python_version="3.13")
|
|
.pip_install("pandas==2.2.0", "numpy")
|
|
)
|
|
```
|
|
|
|
Pin dependencies tightly (e.g., `"torch==2.8.0"`) for reproducibility.
|
|
|
|
## Installing System Packages
|
|
|
|
Install Linux packages with apt:
|
|
|
|
```python
|
|
image = modal.Image.debian_slim().apt_install("git", "curl")
|
|
```
|
|
|
|
## Setting Environment Variables
|
|
|
|
Pass a dictionary to `.env()`:
|
|
|
|
```python
|
|
image = modal.Image.debian_slim().env({"PORT": "6443"})
|
|
```
|
|
|
|
## Running Shell Commands
|
|
|
|
Execute commands during image build:
|
|
|
|
```python
|
|
image = (
|
|
modal.Image.debian_slim()
|
|
.apt_install("git")
|
|
.run_commands("git clone https://github.com/modal-labs/gpu-glossary")
|
|
)
|
|
```
|
|
|
|
## Running Python Functions at Build Time
|
|
|
|
Download model weights or perform setup:
|
|
|
|
```python
|
|
def download_models():
|
|
import diffusers
|
|
model_name = "segmind/small-sd"
|
|
pipe = diffusers.StableDiffusionPipeline.from_pretrained(model_name)
|
|
|
|
hf_cache = modal.Volume.from_name("hf-cache")
|
|
|
|
image = (
|
|
modal.Image.debian_slim()
|
|
.pip_install("diffusers[torch]", "transformers")
|
|
.run_function(
|
|
download_models,
|
|
secrets=[modal.Secret.from_name("huggingface-secret")],
|
|
volumes={"/root/.cache/huggingface": hf_cache},
|
|
)
|
|
)
|
|
```
|
|
|
|
## Adding Local Files
|
|
|
|
### Add Files or Directories
|
|
|
|
```python
|
|
image = modal.Image.debian_slim().add_local_dir(
|
|
"/user/erikbern/.aws",
|
|
remote_path="/root/.aws"
|
|
)
|
|
```
|
|
|
|
By default, files are added at container startup. Use `copy=True` to include in built image.
|
|
|
|
### Add Python Source
|
|
|
|
Add importable Python modules:
|
|
|
|
```python
|
|
image = modal.Image.debian_slim().add_local_python_source("local_module")
|
|
|
|
@app.function(image=image)
|
|
def f():
|
|
import local_module
|
|
local_module.do_stuff()
|
|
```
|
|
|
|
## Using Existing Container Images
|
|
|
|
### From Public Registry
|
|
|
|
```python
|
|
sklearn_image = modal.Image.from_registry("huanjason/scikit-learn")
|
|
|
|
@app.function(image=sklearn_image)
|
|
def fit_knn():
|
|
from sklearn.neighbors import KNeighborsClassifier
|
|
...
|
|
```
|
|
|
|
Can pull from Docker Hub, Nvidia NGC, AWS ECR, GitHub ghcr.io.
|
|
|
|
### From Private Registry
|
|
|
|
Use Modal Secrets for authentication:
|
|
|
|
**Docker Hub**:
|
|
```python
|
|
secret = modal.Secret.from_name("my-docker-secret")
|
|
image = modal.Image.from_registry(
|
|
"private-repo/image:tag",
|
|
secret=secret
|
|
)
|
|
```
|
|
|
|
**AWS ECR**:
|
|
```python
|
|
aws_secret = modal.Secret.from_name("my-aws-secret")
|
|
image = modal.Image.from_aws_ecr(
|
|
"000000000000.dkr.ecr.us-east-1.amazonaws.com/my-private-registry:latest",
|
|
secret=aws_secret,
|
|
)
|
|
```
|
|
|
|
### From Dockerfile
|
|
|
|
```python
|
|
image = modal.Image.from_dockerfile("Dockerfile")
|
|
|
|
@app.function(image=image)
|
|
def fit():
|
|
import sklearn
|
|
...
|
|
```
|
|
|
|
Can still extend with other image methods after importing.
|
|
|
|
## Using Micromamba
|
|
|
|
For coordinated installation of Python and system packages:
|
|
|
|
```python
|
|
numpyro_pymc_image = (
|
|
modal.Image.micromamba()
|
|
.micromamba_install("pymc==5.10.4", "numpyro==0.13.2", channels=["conda-forge"])
|
|
)
|
|
```
|
|
|
|
## GPU Support at Build Time
|
|
|
|
Run build steps on GPU instances:
|
|
|
|
```python
|
|
image = (
|
|
modal.Image.debian_slim()
|
|
.pip_install("bitsandbytes", gpu="H100")
|
|
)
|
|
```
|
|
|
|
## Image Caching
|
|
|
|
Images are cached per layer. Breaking cache on one layer causes cascading rebuilds for subsequent layers.
|
|
|
|
Define frequently-changing layers last to maximize cache reuse.
|
|
|
|
### Force Rebuild
|
|
|
|
```python
|
|
image = (
|
|
modal.Image.debian_slim()
|
|
.apt_install("git")
|
|
.pip_install("slack-sdk", force_build=True)
|
|
)
|
|
```
|
|
|
|
Or set environment variable:
|
|
```bash
|
|
MODAL_FORCE_BUILD=1 modal run ...
|
|
```
|
|
|
|
## Handling Different Local/Remote Packages
|
|
|
|
Import packages only available remotely inside function bodies:
|
|
|
|
```python
|
|
@app.function(image=image)
|
|
def my_function():
|
|
import pandas as pd # Only imported remotely
|
|
df = pd.DataFrame()
|
|
...
|
|
```
|
|
|
|
Or use the imports context manager:
|
|
|
|
```python
|
|
pandas_image = modal.Image.debian_slim().pip_install("pandas")
|
|
|
|
with pandas_image.imports():
|
|
import pandas as pd
|
|
|
|
@app.function(image=pandas_image)
|
|
def my_function():
|
|
df = pd.DataFrame()
|
|
```
|
|
|
|
## Fast Pull from Registry with eStargz
|
|
|
|
Improve pull performance with eStargz compression:
|
|
|
|
```bash
|
|
docker buildx build --tag "<registry>/<namespace>/<repo>:<version>" \
|
|
--output type=registry,compression=estargz,force-compression=true,oci-mediatypes=true \
|
|
.
|
|
```
|
|
|
|
Supported registries:
|
|
- AWS ECR
|
|
- Docker Hub
|
|
- Google Artifact Registry
|