13 KiB
Matchms Similarity Functions Reference
This document provides detailed information about all similarity scoring methods available in matchms.
Overview
Matchms provides multiple similarity functions for comparing mass spectra. Use calculate_scores() to compute pairwise similarities between reference and query spectra collections.
from matchms import calculate_scores
from matchms.similarity import CosineGreedy
scores = calculate_scores(references=library_spectra,
queries=query_spectra,
similarity_function=CosineGreedy())
Peak-Based Similarity Functions
These functions compare mass spectra based on their peak patterns (m/z and intensity values).
CosineGreedy
Description: Calculates cosine similarity between two spectra using a fast greedy matching algorithm. Peaks are matched within a specified tolerance, and similarity is computed based on matched peak intensities.
When to use:
- Fast similarity calculations for large datasets
- General-purpose spectral matching
- When speed is prioritized over mathematically optimal matching
Parameters:
tolerance(float, default=0.1): Maximum m/z difference for peak matching (Daltons)mz_power(float, default=0.0): Exponent for m/z weighting (0 = no weighting)intensity_power(float, default=1.0): Exponent for intensity weighting
Example:
from matchms.similarity import CosineGreedy
similarity_func = CosineGreedy(tolerance=0.1, mz_power=0.0, intensity_power=1.0)
scores = calculate_scores(references, queries, similarity_func)
Output: Similarity score between 0.0 and 1.0, plus number of matched peaks.
CosineHungarian
Description: Calculates cosine similarity using the Hungarian algorithm for optimal peak matching. Provides mathematically optimal peak assignments but is slower than CosineGreedy.
When to use:
- When optimal peak matching is required
- High-quality reference library comparisons
- Research requiring reproducible, mathematically rigorous results
Parameters:
tolerance(float, default=0.1): Maximum m/z difference for peak matchingmz_power(float, default=0.0): Exponent for m/z weightingintensity_power(float, default=1.0): Exponent for intensity weighting
Example:
from matchms.similarity import CosineHungarian
similarity_func = CosineHungarian(tolerance=0.1)
scores = calculate_scores(references, queries, similarity_func)
Output: Optimal similarity score between 0.0 and 1.0, plus matched peaks.
Note: Slower than CosineGreedy; use for smaller datasets or when accuracy is critical.
ModifiedCosine
Description: Extends cosine similarity by accounting for precursor m/z differences. Allows peaks to match after applying a mass shift based on the difference between precursor masses. Useful for comparing spectra of related compounds (isotopes, adducts, analogs).
When to use:
- Comparing spectra from different precursor masses
- Identifying structural analogs or derivatives
- Cross-ionization mode comparisons
- When precursor mass differences are meaningful
Parameters:
tolerance(float, default=0.1): Maximum m/z difference for peak matching after shiftmz_power(float, default=0.0): Exponent for m/z weightingintensity_power(float, default=1.0): Exponent for intensity weighting
Example:
from matchms.similarity import ModifiedCosine
similarity_func = ModifiedCosine(tolerance=0.1)
scores = calculate_scores(references, queries, similarity_func)
Requirements: Both spectra must have valid precursor_mz metadata.
NeutralLossesCosine
Description: Calculates similarity based on neutral loss patterns rather than fragment m/z values. Neutral losses are derived by subtracting fragment m/z from precursor m/z. Particularly useful for identifying compounds with similar fragmentation patterns.
When to use:
- Comparing fragmentation patterns across different precursor masses
- Identifying compounds with similar neutral loss profiles
- Complementary to regular cosine scoring
- Metabolite identification and classification
Parameters:
tolerance(float, default=0.1): Maximum neutral loss difference for matchingmz_power(float, default=0.0): Exponent for loss value weightingintensity_power(float, default=1.0): Exponent for intensity weighting
Example:
from matchms.similarity import NeutralLossesCosine
from matchms.filtering import add_losses
# First add losses to spectra
spectra_with_losses = [add_losses(s) for s in spectra]
similarity_func = NeutralLossesCosine(tolerance=0.1)
scores = calculate_scores(references_with_losses, queries_with_losses, similarity_func)
Requirements:
- Both spectra must have valid precursor_mz metadata
- Use
add_losses()filter to compute neutral losses before scoring
Structural Similarity Functions
These functions compare molecular structures rather than spectral peaks.
FingerprintSimilarity
Description: Calculates similarity between molecular fingerprints derived from chemical structures (SMILES or InChI). Supports multiple fingerprint types and similarity metrics.
When to use:
- Structural similarity without spectral data
- Combining structural and spectral similarity
- Pre-filtering candidates before spectral matching
- Structure-activity relationship studies
Parameters:
fingerprint_type(str, default="daylight"): Type of fingerprint"daylight": Daylight fingerprint"morgan1","morgan2","morgan3": Morgan fingerprints with radius 1, 2, or 3
similarity_measure(str, default="jaccard"): Similarity metric"jaccard": Jaccard index (intersection / union)"dice": Dice coefficient (2 * intersection / (size1 + size2))"cosine": Cosine similarity
Example:
from matchms.similarity import FingerprintSimilarity
from matchms.filtering import add_fingerprint
# Add fingerprints to spectra
spectra_with_fps = [add_fingerprint(s, fingerprint_type="morgan2", nbits=2048)
for s in spectra]
similarity_func = FingerprintSimilarity(similarity_measure="jaccard")
scores = calculate_scores(references_with_fps, queries_with_fps, similarity_func)
Requirements:
- Spectra must have valid SMILES or InChI metadata
- Use
add_fingerprint()filter to compute fingerprints - Requires rdkit library
Metadata-Based Similarity Functions
These functions compare metadata fields rather than spectral or structural data.
MetadataMatch
Description: Compares user-defined metadata fields between spectra. Supports exact matching for categorical data and tolerance-based matching for numerical data.
When to use:
- Filtering by experimental conditions (collision energy, retention time)
- Instrument-specific matching
- Combining metadata constraints with spectral similarity
- Custom metadata-based filtering
Parameters:
field(str): Metadata field name to comparematching_type(str, default="exact"): Matching method"exact": Exact string/value match"difference": Absolute difference for numerical values"relative_difference": Relative difference for numerical values
tolerance(float, optional): Maximum difference for numerical matching
Example (Exact matching):
from matchms.similarity import MetadataMatch
# Match by instrument type
similarity_func = MetadataMatch(field="instrument_type", matching_type="exact")
scores = calculate_scores(references, queries, similarity_func)
Example (Numerical matching):
# Match retention time within 0.5 minutes
similarity_func = MetadataMatch(field="retention_time",
matching_type="difference",
tolerance=0.5)
scores = calculate_scores(references, queries, similarity_func)
Output: Returns 1.0 (match) or 0.0 (no match) for exact matching. For numerical matching, returns similarity score based on difference.
PrecursorMzMatch
Description: Binary matching based on precursor m/z values. Returns True/False based on whether precursor masses match within specified tolerance.
When to use:
- Pre-filtering spectral libraries by precursor mass
- Fast mass-based candidate selection
- Combining with other similarity metrics
- Isobaric compound identification
Parameters:
tolerance(float, default=0.1): Maximum m/z difference for matchingtolerance_type(str, default="Dalton"): Tolerance unit"Dalton": Absolute mass difference"ppm": Parts per million (relative)
Example:
from matchms.similarity import PrecursorMzMatch
# Match precursor within 0.1 Da
similarity_func = PrecursorMzMatch(tolerance=0.1, tolerance_type="Dalton")
scores = calculate_scores(references, queries, similarity_func)
# Match precursor within 10 ppm
similarity_func = PrecursorMzMatch(tolerance=10, tolerance_type="ppm")
scores = calculate_scores(references, queries, similarity_func)
Output: 1.0 (match) or 0.0 (no match)
Requirements: Both spectra must have valid precursor_mz metadata.
ParentMassMatch
Description: Binary matching based on parent mass (neutral mass) values. Similar to PrecursorMzMatch but uses calculated parent mass instead of precursor m/z.
When to use:
- Comparing spectra from different ionization modes
- Adduct-independent matching
- Neutral mass-based library searches
Parameters:
tolerance(float, default=0.1): Maximum mass difference for matchingtolerance_type(str, default="Dalton"): Tolerance unit ("Dalton" or "ppm")
Example:
from matchms.similarity import ParentMassMatch
similarity_func = ParentMassMatch(tolerance=0.1, tolerance_type="Dalton")
scores = calculate_scores(references, queries, similarity_func)
Output: 1.0 (match) or 0.0 (no match)
Requirements: Both spectra must have valid parent_mass metadata.
Combining Multiple Similarity Functions
Combine multiple similarity metrics for robust compound identification:
from matchms import calculate_scores
from matchms.similarity import CosineGreedy, ModifiedCosine, FingerprintSimilarity
# Calculate multiple similarity scores
cosine_scores = calculate_scores(refs, queries, CosineGreedy())
modified_cosine_scores = calculate_scores(refs, queries, ModifiedCosine())
fingerprint_scores = calculate_scores(refs, queries, FingerprintSimilarity())
# Combine scores with weights
for i, query in enumerate(queries):
for j, ref in enumerate(refs):
combined_score = (0.5 * cosine_scores.scores[j, i] +
0.3 * modified_cosine_scores.scores[j, i] +
0.2 * fingerprint_scores.scores[j, i])
Accessing Scores Results
The Scores object provides multiple methods to access results:
# Get best matches for a query
best_matches = scores.scores_by_query(query_spectrum, sort=True)[:10]
# Get scores as numpy array
score_array = scores.scores
# Get scores as pandas DataFrame
import pandas as pd
df = scores.to_dataframe()
# Filter by threshold
high_scores = [(i, j, score) for i, j, score in scores.to_list() if score > 0.7]
# Save scores
scores.to_json("scores.json")
scores.to_pickle("scores.pkl")
Performance Considerations
Fast methods (large datasets):
- CosineGreedy
- PrecursorMzMatch
- ParentMassMatch
Slow methods (smaller datasets or high accuracy):
- CosineHungarian
- ModifiedCosine (slower than CosineGreedy)
- NeutralLossesCosine
- FingerprintSimilarity (requires fingerprint computation)
Recommendation: For large-scale library searches, use PrecursorMzMatch to pre-filter candidates, then apply CosineGreedy or ModifiedCosine to filtered results.
Common Similarity Workflows
Standard Library Matching
from matchms.similarity import CosineGreedy
scores = calculate_scores(library_spectra, query_spectra,
CosineGreedy(tolerance=0.1))
Multi-Metric Matching
from matchms.similarity import CosineGreedy, ModifiedCosine, FingerprintSimilarity
# Spectral similarity
cosine = calculate_scores(refs, queries, CosineGreedy())
modified = calculate_scores(refs, queries, ModifiedCosine())
# Structural similarity
fingerprint = calculate_scores(refs, queries, FingerprintSimilarity())
Precursor-Filtered Matching
from matchms.similarity import PrecursorMzMatch, CosineGreedy
# First filter by precursor mass
mass_filter = calculate_scores(refs, queries, PrecursorMzMatch(tolerance=0.1))
# Then calculate cosine only for matching precursors
cosine_scores = calculate_scores(refs, queries, CosineGreedy())
Further Reading
For detailed API documentation, parameter descriptions, and mathematical formulations, see: https://matchms.readthedocs.io/en/latest/api/matchms.similarity.html