16 KiB
16 KiB
COBRApy API Quick Reference
This document provides quick reference for common COBRApy functions, signatures, and usage patterns.
Model I/O
Loading Models
from cobra.io import load_model, read_sbml_model, load_json_model, load_yaml_model, load_matlab_model
# Bundled test models
model = load_model("textbook") # E. coli core metabolism
model = load_model("ecoli") # Full E. coli iJO1366
model = load_model("salmonella") # Salmonella LT2
# From files
model = read_sbml_model(filename, f_replace={}, **kwargs)
model = load_json_model(filename)
model = load_yaml_model(filename)
model = load_matlab_model(filename, variable_name=None)
Saving Models
from cobra.io import write_sbml_model, save_json_model, save_yaml_model, save_matlab_model
write_sbml_model(model, filename, f_replace={}, **kwargs)
save_json_model(model, filename, pretty=False, **kwargs)
save_yaml_model(model, filename, **kwargs)
save_matlab_model(model, filename, **kwargs)
Model Structure
Core Classes
from cobra import Model, Reaction, Metabolite, Gene
# Create model
model = Model(id_or_model=None, name=None)
# Create metabolite
metabolite = Metabolite(
id=None,
formula=None,
name="",
charge=None,
compartment=None
)
# Create reaction
reaction = Reaction(
id=None,
name="",
subsystem="",
lower_bound=0.0,
upper_bound=None
)
# Create gene
gene = Gene(id=None, name="", functional=True)
Model Attributes
# Component access (DictList objects)
model.reactions # DictList of Reaction objects
model.metabolites # DictList of Metabolite objects
model.genes # DictList of Gene objects
# Special reaction lists
model.exchanges # Exchange reactions (external transport)
model.demands # Demand reactions (metabolite sinks)
model.sinks # Sink reactions
model.boundary # All boundary reactions
# Model properties
model.objective # Current objective (read/write)
model.objective_direction # "max" or "min"
model.medium # Growth medium (dict of exchange: bound)
model.solver # Optimization solver
DictList Methods
# Access by index
item = model.reactions[0]
# Access by ID
item = model.reactions.get_by_id("PFK")
# Query by string (substring match)
items = model.reactions.query("atp") # Case-insensitive search
items = model.reactions.query(lambda x: x.subsystem == "Glycolysis")
# List comprehension
items = [r for r in model.reactions if r.lower_bound < 0]
# Check membership
"PFK" in model.reactions
Optimization
Basic Optimization
# Full optimization (returns Solution object)
solution = model.optimize()
# Attributes of Solution
solution.objective_value # Objective function value
solution.status # Optimization status ("optimal", "infeasible", etc.)
solution.fluxes # Pandas Series of reaction fluxes
solution.shadow_prices # Pandas Series of metabolite shadow prices
solution.reduced_costs # Pandas Series of reduced costs
# Fast optimization (returns float only)
objective_value = model.slim_optimize()
# Change objective
model.objective = "ATPM"
model.objective = model.reactions.ATPM
model.objective = {model.reactions.ATPM: 1.0}
# Change optimization direction
model.objective_direction = "max" # or "min"
Solver Configuration
# Check available solvers
from cobra.util.solver import solvers
print(solvers)
# Change solver
model.solver = "glpk" # or "cplex", "gurobi", etc.
# Solver-specific configuration
model.solver.configuration.timeout = 60 # seconds
model.solver.configuration.verbosity = 1
model.solver.configuration.tolerances.feasibility = 1e-9
Flux Analysis
Flux Balance Analysis (FBA)
from cobra.flux_analysis import pfba, geometric_fba
# Parsimonious FBA
solution = pfba(model, fraction_of_optimum=1.0, **kwargs)
# Geometric FBA
solution = geometric_fba(model, epsilon=1e-06, max_tries=200)
Flux Variability Analysis (FVA)
from cobra.flux_analysis import flux_variability_analysis
fva_result = flux_variability_analysis(
model,
reaction_list=None, # List of reaction IDs or None for all
loopless=False, # Eliminate thermodynamically infeasible loops
fraction_of_optimum=1.0, # Optimality fraction (0.0-1.0)
pfba_factor=None, # Optional pFBA constraint
processes=1 # Number of parallel processes
)
# Returns DataFrame with columns: minimum, maximum
Gene and Reaction Deletions
from cobra.flux_analysis import (
single_gene_deletion,
single_reaction_deletion,
double_gene_deletion,
double_reaction_deletion
)
# Single deletions
results = single_gene_deletion(
model,
gene_list=None, # None for all genes
processes=1,
**kwargs
)
results = single_reaction_deletion(
model,
reaction_list=None, # None for all reactions
processes=1,
**kwargs
)
# Double deletions
results = double_gene_deletion(
model,
gene_list1=None,
gene_list2=None,
processes=1,
**kwargs
)
results = double_reaction_deletion(
model,
reaction_list1=None,
reaction_list2=None,
processes=1,
**kwargs
)
# Returns DataFrame with columns: ids, growth, status
# For double deletions, index is MultiIndex of gene/reaction pairs
Flux Sampling
from cobra.sampling import sample, OptGPSampler, ACHRSampler
# Simple interface
samples = sample(
model,
n, # Number of samples
method="optgp", # or "achr"
thinning=100, # Thinning factor (sample every n iterations)
processes=1, # Parallel processes (OptGP only)
seed=None # Random seed
)
# Advanced interface with sampler objects
sampler = OptGPSampler(model, processes=4, thinning=100)
sampler = ACHRSampler(model, thinning=100)
# Generate samples
samples = sampler.sample(n)
# Validate samples
validation = sampler.validate(sampler.samples)
# Returns array of 'v' (valid), 'l' (lower bound violation),
# 'u' (upper bound violation), 'e' (equality violation)
# Batch sampling
sampler.batch(n_samples, n_batches)
Production Envelopes
from cobra.flux_analysis import production_envelope
envelope = production_envelope(
model,
reactions, # List of 1-2 reaction IDs
objective=None, # Objective reaction ID (None uses model objective)
carbon_sources=None, # Carbon source for yield calculation
points=20, # Number of points to calculate
threshold=0.01 # Minimum objective value threshold
)
# Returns DataFrame with columns:
# - First reaction flux
# - Second reaction flux (if provided)
# - objective_minimum, objective_maximum
# - carbon_yield_minimum, carbon_yield_maximum (if carbon source specified)
# - mass_yield_minimum, mass_yield_maximum
Gapfilling
from cobra.flux_analysis import gapfill
# Basic gapfilling
solution = gapfill(
model,
universal=None, # Universal model with candidate reactions
lower_bound=0.05, # Minimum objective flux
penalties=None, # Dict of reaction: penalty
demand_reactions=True, # Add demand reactions if needed
exchange_reactions=False,
iterations=1
)
# Returns list of Reaction objects to add
# Multiple solutions
solutions = []
for i in range(5):
sol = gapfill(model, universal, iterations=1)
solutions.append(sol)
# Prevent finding same solution by increasing penalties
Other Analysis Methods
from cobra.flux_analysis import (
find_blocked_reactions,
find_essential_genes,
find_essential_reactions
)
# Blocked reactions (cannot carry flux)
blocked = find_blocked_reactions(
model,
reaction_list=None,
zero_cutoff=1e-9,
open_exchanges=False
)
# Essential genes/reactions
essential_genes = find_essential_genes(model, threshold=0.01)
essential_reactions = find_essential_reactions(model, threshold=0.01)
Media and Boundary Conditions
Medium Management
# Get current medium (returns dict)
medium = model.medium
# Set medium (must reassign entire dict)
medium = model.medium
medium["EX_glc__D_e"] = 10.0
medium["EX_o2_e"] = 20.0
model.medium = medium
# Alternative: individual modification
with model:
model.reactions.EX_glc__D_e.lower_bound = -10.0
Minimal Media
from cobra.medium import minimal_medium
min_medium = minimal_medium(
model,
min_objective_value=0.1, # Minimum growth rate
minimize_components=False, # If True, uses MILP (slower)
open_exchanges=False, # Open all exchanges before optimization
exports=False, # Allow metabolite export
penalties=None # Dict of exchange: penalty
)
# Returns Series of exchange reactions with fluxes
Boundary Reactions
# Add boundary reaction
model.add_boundary(
metabolite,
type="exchange", # or "demand", "sink"
reaction_id=None, # Auto-generated if None
lb=None,
ub=None,
sbo_term=None
)
# Access boundary reactions
exchanges = model.exchanges # System boundary
demands = model.demands # Intracellular removal
sinks = model.sinks # Intracellular exchange
boundaries = model.boundary # All boundary reactions
Model Manipulation
Adding Components
# Add reactions
model.add_reactions([reaction1, reaction2, ...])
model.add_reaction(reaction)
# Add metabolites
reaction.add_metabolites({
metabolite1: -1.0, # Consumed (negative stoichiometry)
metabolite2: 1.0 # Produced (positive stoichiometry)
})
# Add metabolites to model
model.add_metabolites([metabolite1, metabolite2, ...])
# Add genes (usually automatic via gene_reaction_rule)
model.genes += [gene1, gene2, ...]
Removing Components
# Remove reactions
model.remove_reactions([reaction1, reaction2, ...])
model.remove_reactions(["PFK", "FBA"])
# Remove metabolites (removes from reactions too)
model.remove_metabolites([metabolite1, metabolite2, ...])
# Remove genes (usually via gene_reaction_rule)
model.genes.remove(gene)
Modifying Reactions
# Set bounds
reaction.bounds = (lower, upper)
reaction.lower_bound = 0.0
reaction.upper_bound = 1000.0
# Modify stoichiometry
reaction.add_metabolites({metabolite: 1.0})
reaction.subtract_metabolites({metabolite: 1.0})
# Change gene-reaction rule
reaction.gene_reaction_rule = "(gene1 and gene2) or gene3"
# Knock out
reaction.knock_out()
gene.knock_out()
Model Copying
# Deep copy (independent model)
model_copy = model.copy()
# Copy specific reactions
new_model = Model("subset")
reactions_to_copy = [model.reactions.PFK, model.reactions.FBA]
new_model.add_reactions(reactions_to_copy)
Context Management
Use context managers for temporary modifications:
# Changes automatically revert after with block
with model:
model.objective = "ATPM"
model.reactions.EX_glc__D_e.lower_bound = -5.0
model.genes.b0008.knock_out()
solution = model.optimize()
# Model state restored here
# Multiple nested contexts
with model:
model.objective = "ATPM"
with model:
model.genes.b0008.knock_out()
# Both modifications active
# Only objective change active
# Context management with reactions
with model:
model.reactions.PFK.knock_out()
# Equivalent to: reaction.lower_bound = reaction.upper_bound = 0
Reaction and Metabolite Properties
Reaction Attributes
reaction.id # Unique identifier
reaction.name # Human-readable name
reaction.subsystem # Pathway/subsystem
reaction.bounds # (lower_bound, upper_bound)
reaction.lower_bound
reaction.upper_bound
reaction.reversibility # Boolean (lower_bound < 0)
reaction.gene_reaction_rule # GPR string
reaction.genes # Set of associated Gene objects
reaction.metabolites # Dict of {metabolite: stoichiometry}
# Methods
reaction.reaction # Stoichiometric equation string
reaction.build_reaction_string() # Same as above
reaction.check_mass_balance() # Returns imbalances or empty dict
reaction.get_coefficient(metabolite_id)
reaction.add_metabolites({metabolite: coeff})
reaction.subtract_metabolites({metabolite: coeff})
reaction.knock_out()
Metabolite Attributes
metabolite.id # Unique identifier
metabolite.name # Human-readable name
metabolite.formula # Chemical formula
metabolite.charge # Charge
metabolite.compartment # Compartment ID
metabolite.reactions # FrozenSet of associated reactions
# Methods
metabolite.summary() # Print production/consumption
metabolite.copy()
Gene Attributes
gene.id # Unique identifier
gene.name # Human-readable name
gene.functional # Boolean activity status
gene.reactions # FrozenSet of associated reactions
# Methods
gene.knock_out()
Model Validation
Consistency Checking
from cobra.manipulation import check_mass_balance, check_metabolite_compartment_formula
# Check all reactions for mass balance
unbalanced = {}
for reaction in model.reactions:
balance = reaction.check_mass_balance()
if balance:
unbalanced[reaction.id] = balance
# Check metabolite formulas are valid
check_metabolite_compartment_formula(model)
Model Statistics
# Basic stats
print(f"Reactions: {len(model.reactions)}")
print(f"Metabolites: {len(model.metabolites)}")
print(f"Genes: {len(model.genes)}")
# Advanced stats
print(f"Exchanges: {len(model.exchanges)}")
print(f"Demands: {len(model.demands)}")
# Blocked reactions
from cobra.flux_analysis import find_blocked_reactions
blocked = find_blocked_reactions(model)
print(f"Blocked reactions: {len(blocked)}")
# Essential genes
from cobra.flux_analysis import find_essential_genes
essential = find_essential_genes(model)
print(f"Essential genes: {len(essential)}")
Summary Methods
# Model summary
model.summary() # Overall model info
# Metabolite summary
model.metabolites.atp_c.summary()
# Reaction summary
model.reactions.PFK.summary()
# Summary with FVA
model.summary(fva=0.95) # Include FVA at 95% optimality
Common Patterns
Batch Analysis Pattern
results = []
for condition in conditions:
with model:
# Apply condition
setup_condition(model, condition)
# Analyze
solution = model.optimize()
# Store result
results.append({
"condition": condition,
"growth": solution.objective_value,
"status": solution.status
})
df = pd.DataFrame(results)
Systematic Knockout Pattern
knockout_results = []
for gene in model.genes:
with model:
gene.knock_out()
solution = model.optimize()
knockout_results.append({
"gene": gene.id,
"growth": solution.objective_value if solution.status == "optimal" else 0,
"status": solution.status
})
df = pd.DataFrame(knockout_results)
Parameter Scan Pattern
parameter_values = np.linspace(0, 20, 21)
results = []
for value in parameter_values:
with model:
model.reactions.EX_glc__D_e.lower_bound = -value
solution = model.optimize()
results.append({
"glucose_uptake": value,
"growth": solution.objective_value,
"acetate_secretion": solution.fluxes["EX_ac_e"]
})
df = pd.DataFrame(results)
This quick reference covers the most commonly used COBRApy functions and patterns. For complete API documentation, see https://cobrapy.readthedocs.io/