Files
2025-11-30 08:30:10 +08:00

310 lines
9.3 KiB
Python
Executable File

#!/usr/bin/env python3
"""
KEGG Pathway Network Analysis
This script analyzes all pathways for an organism and extracts:
- Pathway sizes (number of genes)
- Protein-protein interactions
- Interaction type distributions
- Network data in various formats (CSV, SIF)
Usage:
python pathway_analysis.py ORGANISM OUTPUT_DIR [--limit N]
Examples:
python pathway_analysis.py hsa ./human_pathways
python pathway_analysis.py mmu ./mouse_pathways --limit 50
Organism codes:
hsa = Homo sapiens (human)
mmu = Mus musculus (mouse)
dme = Drosophila melanogaster
sce = Saccharomyces cerevisiae (yeast)
eco = Escherichia coli
"""
import sys
import os
import argparse
import csv
from collections import Counter
from bioservices import KEGG
def get_all_pathways(kegg, organism):
"""Get all pathway IDs for organism."""
print(f"\nRetrieving pathways for {organism}...")
kegg.organism = organism
pathway_ids = kegg.pathwayIds
print(f"✓ Found {len(pathway_ids)} pathways")
return pathway_ids
def analyze_pathway(kegg, pathway_id):
"""Analyze single pathway for size and interactions."""
try:
# Parse KGML pathway
kgml = kegg.parse_kgml_pathway(pathway_id)
entries = kgml.get('entries', [])
relations = kgml.get('relations', [])
# Count relation types
relation_types = Counter()
for rel in relations:
rel_type = rel.get('name', 'unknown')
relation_types[rel_type] += 1
# Get pathway name
try:
entry = kegg.get(pathway_id)
pathway_name = "Unknown"
for line in entry.split("\n"):
if line.startswith("NAME"):
pathway_name = line.replace("NAME", "").strip()
break
except:
pathway_name = "Unknown"
result = {
'pathway_id': pathway_id,
'pathway_name': pathway_name,
'num_entries': len(entries),
'num_relations': len(relations),
'relation_types': dict(relation_types),
'entries': entries,
'relations': relations
}
return result
except Exception as e:
print(f" ✗ Error analyzing {pathway_id}: {e}")
return None
def analyze_all_pathways(kegg, pathway_ids, limit=None):
"""Analyze all pathways."""
if limit:
pathway_ids = pathway_ids[:limit]
print(f"\n⚠ Limiting analysis to first {limit} pathways")
print(f"\nAnalyzing {len(pathway_ids)} pathways...")
results = []
for i, pathway_id in enumerate(pathway_ids, 1):
print(f" [{i}/{len(pathway_ids)}] {pathway_id}", end="\r")
result = analyze_pathway(kegg, pathway_id)
if result:
results.append(result)
print(f"\n✓ Successfully analyzed {len(results)}/{len(pathway_ids)} pathways")
return results
def save_pathway_summary(results, output_file):
"""Save pathway summary to CSV."""
print(f"\nSaving pathway summary to {output_file}...")
with open(output_file, 'w', newline='') as f:
writer = csv.writer(f)
# Header
writer.writerow([
'Pathway_ID',
'Pathway_Name',
'Num_Genes',
'Num_Interactions',
'Activation',
'Inhibition',
'Phosphorylation',
'Binding',
'Other'
])
# Data
for result in results:
rel_types = result['relation_types']
writer.writerow([
result['pathway_id'],
result['pathway_name'],
result['num_entries'],
result['num_relations'],
rel_types.get('activation', 0),
rel_types.get('inhibition', 0),
rel_types.get('phosphorylation', 0),
rel_types.get('binding/association', 0),
sum(v for k, v in rel_types.items()
if k not in ['activation', 'inhibition', 'phosphorylation', 'binding/association'])
])
print(f"✓ Summary saved")
def save_interactions_sif(results, output_file):
"""Save all interactions in SIF format."""
print(f"\nSaving interactions to {output_file}...")
with open(output_file, 'w') as f:
for result in results:
pathway_id = result['pathway_id']
for rel in result['relations']:
entry1 = rel.get('entry1', '')
entry2 = rel.get('entry2', '')
interaction_type = rel.get('name', 'interaction')
# Write SIF format: source\tinteraction\ttarget
f.write(f"{entry1}\t{interaction_type}\t{entry2}\n")
print(f"✓ Interactions saved")
def save_detailed_pathway_info(results, output_dir):
"""Save detailed information for each pathway."""
print(f"\nSaving detailed pathway files to {output_dir}/pathways/...")
pathway_dir = os.path.join(output_dir, "pathways")
os.makedirs(pathway_dir, exist_ok=True)
for result in results:
pathway_id = result['pathway_id'].replace(":", "_")
filename = os.path.join(pathway_dir, f"{pathway_id}_interactions.csv")
with open(filename, 'w', newline='') as f:
writer = csv.writer(f)
writer.writerow(['Source', 'Target', 'Interaction_Type', 'Link_Type'])
for rel in result['relations']:
writer.writerow([
rel.get('entry1', ''),
rel.get('entry2', ''),
rel.get('name', 'unknown'),
rel.get('link', 'unknown')
])
print(f"✓ Detailed files saved for {len(results)} pathways")
def print_statistics(results):
"""Print analysis statistics."""
print(f"\n{'='*70}")
print("PATHWAY ANALYSIS STATISTICS")
print(f"{'='*70}")
# Total stats
total_pathways = len(results)
total_interactions = sum(r['num_relations'] for r in results)
total_genes = sum(r['num_entries'] for r in results)
print(f"\nOverall:")
print(f" Total pathways: {total_pathways}")
print(f" Total genes/proteins: {total_genes}")
print(f" Total interactions: {total_interactions}")
# Largest pathways
print(f"\nLargest pathways (by gene count):")
sorted_by_size = sorted(results, key=lambda x: x['num_entries'], reverse=True)
for i, result in enumerate(sorted_by_size[:10], 1):
print(f" {i}. {result['pathway_id']}: {result['num_entries']} genes")
print(f" {result['pathway_name']}")
# Most connected pathways
print(f"\nMost connected pathways (by interactions):")
sorted_by_connections = sorted(results, key=lambda x: x['num_relations'], reverse=True)
for i, result in enumerate(sorted_by_connections[:10], 1):
print(f" {i}. {result['pathway_id']}: {result['num_relations']} interactions")
print(f" {result['pathway_name']}")
# Interaction type distribution
print(f"\nInteraction type distribution:")
all_types = Counter()
for result in results:
for rel_type, count in result['relation_types'].items():
all_types[rel_type] += count
for rel_type, count in all_types.most_common():
percentage = (count / total_interactions) * 100 if total_interactions > 0 else 0
print(f" {rel_type}: {count} ({percentage:.1f}%)")
def main():
"""Main analysis workflow."""
parser = argparse.ArgumentParser(
description="Analyze KEGG pathways for an organism",
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog="""
Examples:
python pathway_analysis.py hsa ./human_pathways
python pathway_analysis.py mmu ./mouse_pathways --limit 50
Organism codes:
hsa = Homo sapiens (human)
mmu = Mus musculus (mouse)
dme = Drosophila melanogaster
sce = Saccharomyces cerevisiae (yeast)
eco = Escherichia coli
"""
)
parser.add_argument("organism", help="KEGG organism code (e.g., hsa, mmu)")
parser.add_argument("output_dir", help="Output directory for results")
parser.add_argument("--limit", type=int, default=None,
help="Limit analysis to first N pathways")
args = parser.parse_args()
print("=" * 70)
print("BIOSERVICES: KEGG Pathway Network Analysis")
print("=" * 70)
# Create output directory
os.makedirs(args.output_dir, exist_ok=True)
# Initialize KEGG
kegg = KEGG()
# Get all pathways
pathway_ids = get_all_pathways(kegg, args.organism)
if not pathway_ids:
print(f"\n✗ No pathways found for {args.organism}")
sys.exit(1)
# Analyze pathways
results = analyze_all_pathways(kegg, pathway_ids, args.limit)
if not results:
print("\n✗ No pathways successfully analyzed")
sys.exit(1)
# Print statistics
print_statistics(results)
# Save results
summary_file = os.path.join(args.output_dir, "pathway_summary.csv")
save_pathway_summary(results, summary_file)
sif_file = os.path.join(args.output_dir, "all_interactions.sif")
save_interactions_sif(results, sif_file)
save_detailed_pathway_info(results, args.output_dir)
# Final summary
print(f"\n{'='*70}")
print("OUTPUT FILES")
print(f"{'='*70}")
print(f" Summary: {summary_file}")
print(f" Interactions: {sif_file}")
print(f" Detailed: {args.output_dir}/pathways/")
print(f"{'='*70}")
if __name__ == "__main__":
main()