9.2 KiB
9.2 KiB
Input/Output Operations
AnnData provides comprehensive I/O functionality for reading and writing data in various formats.
Native Formats
H5AD (HDF5-based)
The recommended native format for AnnData objects, providing efficient storage and fast access.
Writing H5AD files
import anndata as ad
# Write to file
adata.write_h5ad('data.h5ad')
# Write with compression
adata.write_h5ad('data.h5ad', compression='gzip')
# Write with specific compression level (0-9, higher = more compression)
adata.write_h5ad('data.h5ad', compression='gzip', compression_opts=9)
Reading H5AD files
# Read entire file into memory
adata = ad.read_h5ad('data.h5ad')
# Read in backed mode (lazy loading for large files)
adata = ad.read_h5ad('data.h5ad', backed='r') # Read-only
adata = ad.read_h5ad('data.h5ad', backed='r+') # Read-write
# Backed mode enables working with datasets larger than RAM
# Only accessed data is loaded into memory
Backed mode operations
# Open in backed mode
adata = ad.read_h5ad('large_dataset.h5ad', backed='r')
# Access metadata without loading X into memory
print(adata.obs.head())
print(adata.var.head())
# Subset operations create views
subset = adata[:100, :500] # View, no data loaded
# Load specific data into memory
X_subset = subset.X[:] # Now loads this subset
# Convert entire backed object to memory
adata_memory = adata.to_memory()
Zarr
Hierarchical array storage format, optimized for cloud storage and parallel I/O.
Writing Zarr
# Write to Zarr store
adata.write_zarr('data.zarr')
# Write with specific chunks (important for performance)
adata.write_zarr('data.zarr', chunks=(100, 100))
Reading Zarr
# Read Zarr store
adata = ad.read_zarr('data.zarr')
Remote Zarr access
import fsspec
# Access Zarr from S3
store = fsspec.get_mapper('s3://bucket-name/data.zarr')
adata = ad.read_zarr(store)
# Access Zarr from URL
store = fsspec.get_mapper('https://example.com/data.zarr')
adata = ad.read_zarr(store)
Alternative Input Formats
CSV/TSV
# Read CSV (genes as columns, cells as rows)
adata = ad.read_csv('data.csv')
# Read with custom delimiter
adata = ad.read_csv('data.tsv', delimiter='\t')
# Specify that first column is row names
adata = ad.read_csv('data.csv', first_column_names=True)
Excel
# Read Excel file
adata = ad.read_excel('data.xlsx')
# Read specific sheet
adata = ad.read_excel('data.xlsx', sheet='Sheet1')
Matrix Market (MTX)
Common format for sparse matrices in genomics.
# Read MTX with associated files
# Requires: matrix.mtx, genes.tsv, barcodes.tsv
adata = ad.read_mtx('matrix.mtx')
# Read with custom gene and barcode files
adata = ad.read_mtx(
'matrix.mtx',
var_names='genes.tsv',
obs_names='barcodes.tsv'
)
# Transpose if needed (MTX often has genes as rows)
adata = adata.T
10X Genomics formats
# Read 10X h5 format
adata = ad.read_10x_h5('filtered_feature_bc_matrix.h5')
# Read 10X MTX directory
adata = ad.read_10x_mtx('filtered_feature_bc_matrix/')
# Specify genome if multiple present
adata = ad.read_10x_h5('data.h5', genome='GRCh38')
Loom
# Read Loom file
adata = ad.read_loom('data.loom')
# Read with specific observation and variable annotations
adata = ad.read_loom(
'data.loom',
obs_names='CellID',
var_names='Gene'
)
Text files
# Read generic text file
adata = ad.read_text('data.txt', delimiter='\t')
# Read with custom parameters
adata = ad.read_text(
'data.txt',
delimiter=',',
first_column_names=True,
dtype='float32'
)
UMI tools
# Read UMI tools format
adata = ad.read_umi_tools('counts.tsv')
HDF5 (generic)
# Read from HDF5 file (not h5ad format)
adata = ad.read_hdf('data.h5', key='dataset')
Alternative Output Formats
CSV
# Write to CSV files (creates multiple files)
adata.write_csvs('output_dir/')
# This creates:
# - output_dir/X.csv (expression matrix)
# - output_dir/obs.csv (observation annotations)
# - output_dir/var.csv (variable annotations)
# - output_dir/uns.csv (unstructured annotations, if possible)
# Skip certain components
adata.write_csvs('output_dir/', skip_data=True) # Skip X matrix
Loom
# Write to Loom format
adata.write_loom('output.loom')
Reading Specific Elements
For fine-grained control, read specific elements from storage:
from anndata import read_elem
# Read just observation annotations
obs = read_elem('data.h5ad/obs')
# Read specific layer
layer = read_elem('data.h5ad/layers/normalized')
# Read unstructured data element
params = read_elem('data.h5ad/uns/pca_params')
Writing Specific Elements
from anndata import write_elem
import h5py
# Write element to existing file
with h5py.File('data.h5ad', 'a') as f:
write_elem(f, 'new_layer', adata.X.copy())
Lazy Operations
For very large datasets, use lazy reading to avoid loading entire datasets:
from anndata.experimental import read_elem_lazy
# Lazy read (returns dask array or similar)
X_lazy = read_elem_lazy('large_data.h5ad/X')
# Compute only when needed
subset = X_lazy[:100, :100].compute()
Common I/O Patterns
Convert between formats
# MTX to H5AD
adata = ad.read_mtx('matrix.mtx').T
adata.write_h5ad('data.h5ad')
# CSV to H5AD
adata = ad.read_csv('data.csv')
adata.write_h5ad('data.h5ad')
# H5AD to Zarr
adata = ad.read_h5ad('data.h5ad')
adata.write_zarr('data.zarr')
Load metadata without data
# Backed mode allows inspecting metadata without loading X
adata = ad.read_h5ad('large_file.h5ad', backed='r')
print(f"Dataset contains {adata.n_obs} observations and {adata.n_vars} variables")
print(adata.obs.columns)
print(adata.var.columns)
# X is not loaded into memory
Append to existing file
# Open in read-write mode
adata = ad.read_h5ad('data.h5ad', backed='r+')
# Modify metadata
adata.obs['new_column'] = values
# Changes are written to disk
Download from URL
import anndata as ad
# Read directly from URL (for h5ad files)
url = 'https://example.com/data.h5ad'
adata = ad.read_h5ad(url, backed='r') # Streaming access
# For other formats, download first
import urllib.request
urllib.request.urlretrieve(url, 'local_file.h5ad')
adata = ad.read_h5ad('local_file.h5ad')
Performance Tips
Reading
- Use
backed='r'for large files you only need to query - Use
backed='r+'if you need to modify metadata without loading all data - H5AD format is generally fastest for random access
- Zarr is better for cloud storage and parallel access
- Consider compression for storage, but note it may slow down reading
Writing
- Use compression for long-term storage:
compression='gzip'orcompression='lzf' - LZF compression is faster but compresses less than GZIP
- For Zarr, tune chunk sizes based on access patterns:
- Larger chunks for sequential reads
- Smaller chunks for random access
- Convert string columns to categorical before writing (smaller files)
Memory management
# Convert strings to categoricals (reduces file size and memory)
adata.strings_to_categoricals()
adata.write_h5ad('data.h5ad')
# Use sparse matrices for sparse data
from scipy.sparse import csr_matrix
if isinstance(adata.X, np.ndarray):
density = np.count_nonzero(adata.X) / adata.X.size
if density < 0.5: # If more than 50% zeros
adata.X = csr_matrix(adata.X)
Handling Large Datasets
Strategy 1: Backed mode
# Work with dataset larger than RAM
adata = ad.read_h5ad('100GB_file.h5ad', backed='r')
# Filter based on metadata (fast, no data loading)
filtered = adata[adata.obs['quality_score'] > 0.8]
# Load filtered subset into memory
adata_memory = filtered.to_memory()
Strategy 2: Chunked processing
# Process data in chunks
adata = ad.read_h5ad('large_file.h5ad', backed='r')
chunk_size = 1000
results = []
for i in range(0, adata.n_obs, chunk_size):
chunk = adata[i:i+chunk_size, :].to_memory()
# Process chunk
result = process(chunk)
results.append(result)
Strategy 3: Use AnnCollection
from anndata.experimental import AnnCollection
# Create collection without loading data
adatas = [f'dataset_{i}.h5ad' for i in range(10)]
collection = AnnCollection(
adatas,
join_obs='inner',
join_vars='inner'
)
# Process collection lazily
# Data is loaded only when accessed
Common Issues and Solutions
Issue: Out of memory when reading
Solution: Use backed mode or read in chunks
adata = ad.read_h5ad('file.h5ad', backed='r')
Issue: Slow reading from cloud storage
Solution: Use Zarr format with appropriate chunking
adata.write_zarr('data.zarr', chunks=(1000, 1000))
Issue: Large file sizes
Solution: Use compression and convert to sparse/categorical
adata.strings_to_categoricals()
from scipy.sparse import csr_matrix
adata.X = csr_matrix(adata.X)
adata.write_h5ad('compressed.h5ad', compression='gzip')
Issue: Cannot modify backed object
Solution: Either load to memory or open in 'r+' mode
# Option 1: Load to memory
adata = adata.to_memory()
# Option 2: Open in read-write mode
adata = ad.read_h5ad('file.h5ad', backed='r+')