# TDC Datasets Comprehensive Catalog This document provides a comprehensive catalog of all available datasets in the Therapeutics Data Commons, organized by task category. ## Single-Instance Prediction Datasets ### ADME (Absorption, Distribution, Metabolism, Excretion) **Absorption:** - `Caco2_Wang` - Caco-2 cell permeability (906 compounds) - `Caco2_AstraZeneca` - Caco-2 permeability from AstraZeneca (700 compounds) - `HIA_Hou` - Human intestinal absorption (578 compounds) - `Pgp_Broccatelli` - P-glycoprotein inhibition (1,212 compounds) - `Bioavailability_Ma` - Oral bioavailability (640 compounds) - `F20_edrug3d` - Oral bioavailability F>=20% (1,017 compounds) - `F30_edrug3d` - Oral bioavailability F>=30% (1,017 compounds) **Distribution:** - `BBB_Martins` - Blood-brain barrier penetration (1,975 compounds) - `PPBR_AZ` - Plasma protein binding rate (1,797 compounds) - `VDss_Lombardo` - Volume of distribution at steady state (1,130 compounds) **Metabolism:** - `CYP2C19_Veith` - CYP2C19 inhibition (12,665 compounds) - `CYP2D6_Veith` - CYP2D6 inhibition (13,130 compounds) - `CYP3A4_Veith` - CYP3A4 inhibition (12,328 compounds) - `CYP1A2_Veith` - CYP1A2 inhibition (12,579 compounds) - `CYP2C9_Veith` - CYP2C9 inhibition (12,092 compounds) - `CYP2C9_Substrate_CarbonMangels` - CYP2C9 substrate (666 compounds) - `CYP2D6_Substrate_CarbonMangels` - CYP2D6 substrate (664 compounds) - `CYP3A4_Substrate_CarbonMangels` - CYP3A4 substrate (667 compounds) **Excretion:** - `Half_Life_Obach` - Half-life (667 compounds) - `Clearance_Hepatocyte_AZ` - Hepatocyte clearance (1,020 compounds) - `Clearance_Microsome_AZ` - Microsome clearance (1,102 compounds) **Solubility & Lipophilicity:** - `Solubility_AqSolDB` - Aqueous solubility (9,982 compounds) - `Lipophilicity_AstraZeneca` - Lipophilicity (logD) (4,200 compounds) - `HydrationFreeEnergy_FreeSolv` - Hydration free energy (642 compounds) ### Toxicity **Organ Toxicity:** - `hERG` - hERG channel inhibition/cardiotoxicity (648 compounds) - `hERG_Karim` - hERG blockers extended dataset (13,445 compounds) - `DILI` - Drug-induced liver injury (475 compounds) - `Skin_Reaction` - Skin reaction (404 compounds) - `Carcinogens_Lagunin` - Carcinogenicity (278 compounds) - `Respiratory_Toxicity` - Respiratory toxicity (278 compounds) **General Toxicity:** - `AMES` - Ames mutagenicity (7,255 compounds) - `LD50_Zhu` - Acute toxicity LD50 (7,385 compounds) - `ClinTox` - Clinical trial toxicity (1,478 compounds) - `SkinSensitization` - Skin sensitization (278 compounds) - `EyeCorrosion` - Eye corrosion (278 compounds) - `EyeIrritation` - Eye irritation (278 compounds) **Environmental Toxicity:** - `Tox21-AhR` - Nuclear receptor signaling (8,169 compounds) - `Tox21-AR` - Androgen receptor (9,362 compounds) - `Tox21-AR-LBD` - Androgen receptor ligand binding (8,343 compounds) - `Tox21-ARE` - Antioxidant response element (6,475 compounds) - `Tox21-aromatase` - Aromatase inhibition (6,733 compounds) - `Tox21-ATAD5` - DNA damage (8,163 compounds) - `Tox21-ER` - Estrogen receptor (7,257 compounds) - `Tox21-ER-LBD` - Estrogen receptor ligand binding (8,163 compounds) - `Tox21-HSE` - Heat shock response (8,162 compounds) - `Tox21-MMP` - Mitochondrial membrane potential (7,394 compounds) - `Tox21-p53` - p53 pathway (8,163 compounds) - `Tox21-PPAR-gamma` - PPAR gamma activation (7,396 compounds) ### HTS (High-Throughput Screening) **SARS-CoV-2:** - `SARSCoV2_Vitro_Touret` - In vitro antiviral activity (1,484 compounds) - `SARSCoV2_3CLPro_Diamond` - 3CL protease inhibition (879 compounds) - `SARSCoV2_Vitro_AlabdulKareem` - In vitro screening (5,953 compounds) **Other Targets:** - `Orexin1_Receptor_Butkiewicz` - Orexin receptor screening (4,675 compounds) - `M1_Receptor_Agonist_Butkiewicz` - M1 receptor agonist (1,700 compounds) - `M1_Receptor_Antagonist_Butkiewicz` - M1 receptor antagonist (1,700 compounds) - `HIV_Butkiewicz` - HIV inhibition (40,000+ compounds) - `ToxCast` - Environmental chemical screening (8,597 compounds) ### QM (Quantum Mechanics) - `QM7` - Quantum mechanics properties (7,160 molecules) - `QM8` - Electronic spectra and excited states (21,786 molecules) - `QM9` - Geometric, energetic, electronic, thermodynamic properties (133,885 molecules) ### Yields - `Buchwald-Hartwig` - Reaction yield prediction (3,955 reactions) - `USPTO_Yields` - Yield prediction from USPTO (853,879 reactions) ### Epitope - `IEDBpep-DiseaseBinder` - Disease-associated epitope binding (6,080 peptides) - `IEDBpep-NonBinder` - Non-binding peptides (24,320 peptides) ### Develop (Development) - `Manufacturing` - Manufacturing success prediction - `Formulation` - Formulation stability ### CRISPROutcome - `CRISPROutcome_Doench` - Gene editing efficiency prediction (5,310 guide RNAs) ## Multi-Instance Prediction Datasets ### DTI (Drug-Target Interaction) **Binding Affinity:** - `BindingDB_Kd` - Dissociation constant (52,284 pairs, 10,665 drugs, 1,413 proteins) - `BindingDB_IC50` - Half-maximal inhibitory concentration (991,486 pairs, 549,205 drugs, 5,078 proteins) - `BindingDB_Ki` - Inhibition constant (375,032 pairs, 174,662 drugs, 3,070 proteins) **Kinase Binding:** - `DAVIS` - Davis kinase binding dataset (30,056 pairs, 68 drugs, 442 proteins) - `KIBA` - KIBA kinase binding dataset (118,254 pairs, 2,111 drugs, 229 proteins) **Binary Interaction:** - `BindingDB_Patent` - Patent-derived DTI (8,503 pairs) - `BindingDB_Approval` - FDA-approved drug DTI (1,649 pairs) ### DDI (Drug-Drug Interaction) - `DrugBank` - Drug-drug interactions (191,808 pairs, 1,706 drugs) - `TWOSIDES` - Side effect-based DDI (4,649,441 pairs, 645 drugs) ### PPI (Protein-Protein Interaction) - `HuRI` - Human reference protein interactome (52,569 interactions) - `STRING` - Protein functional associations (19,247 interactions) ### GDA (Gene-Disease Association) - `DisGeNET` - Gene-disease associations (81,746 pairs) - `PrimeKG_GDA` - Gene-disease from PrimeKG knowledge graph ### DrugRes (Drug Response/Resistance) - `GDSC1` - Genomics of Drug Sensitivity in Cancer v1 (178,000 pairs) - `GDSC2` - Genomics of Drug Sensitivity in Cancer v2 (125,000 pairs) ### DrugSyn (Drug Synergy) - `DrugComb` - Drug combination synergy (345,502 combinations) - `DrugCombDB` - Drug combination database (448,555 combinations) - `OncoPolyPharmacology` - Oncology drug combinations (22,737 combinations) ### PeptideMHC - `MHC1_NetMHCpan` - MHC class I binding (184,983 pairs) - `MHC2_NetMHCIIpan` - MHC class II binding (134,281 pairs) ### AntibodyAff (Antibody Affinity) - `Protein_SAbDab` - Antibody-antigen affinity (1,500+ pairs) ### MTI (miRNA-Target Interaction) - `miRTarBase` - Experimentally validated miRNA-target interactions (380,639 pairs) ### Catalyst - `USPTO_Catalyst` - Catalyst prediction for reactions (11,000+ reactions) ### TrialOutcome - `TrialOutcome_WuXi` - Clinical trial outcome prediction (3,769 trials) ## Generation Datasets ### MolGen (Molecular Generation) - `ChEMBL_V29` - Drug-like molecules from ChEMBL (1,941,410 molecules) - `ZINC` - ZINC database subset (100,000+ molecules) - `GuacaMol` - Goal-directed benchmark molecules - `Moses` - Molecular sets benchmark (1,936,962 molecules) ### RetroSyn (Retrosynthesis) - `USPTO` - Retrosynthesis from USPTO patents (1,939,253 reactions) - `USPTO-50K` - Curated USPTO subset (50,000 reactions) ### PairMolGen (Paired Molecule Generation) - `Prodrug` - Prodrug to drug transformations (1,000+ pairs) - `Metabolite` - Drug to metabolite transformations ## Using retrieve_dataset_names To programmatically access all available datasets for a specific task: ```python from tdc.utils import retrieve_dataset_names # Get all datasets for a specific task adme_datasets = retrieve_dataset_names('ADME') tox_datasets = retrieve_dataset_names('Tox') dti_datasets = retrieve_dataset_names('DTI') hts_datasets = retrieve_dataset_names('HTS') ``` ## Dataset Statistics Access dataset statistics directly: ```python from tdc.single_pred import ADME data = ADME(name='Caco2_Wang') # Print basic statistics data.print_stats() # Get label distribution data.label_distribution() ``` ## Loading Datasets All datasets follow the same loading pattern: ```python from tdc. import data = (name='') # Get full dataset df = data.get_data(format='df') # or 'dict', 'DeepPurpose', etc. # Get train/valid/test split split = data.get_split(method='scaffold', seed=1, frac=[0.7, 0.1, 0.2]) ``` ## Notes - Dataset sizes and statistics are approximate and may be updated - New datasets are regularly added to TDC - Some datasets may require additional dependencies - Check the official TDC website for the most up-to-date dataset list: https://tdcommons.ai/overview/