--- name: plotly description: Interactive scientific and statistical data visualization library for Python. Use when creating charts, plots, or visualizations including scatter plots, line charts, bar charts, heatmaps, 3D plots, geographic maps, statistical distributions, financial charts, and dashboards. Supports both quick visualizations (Plotly Express) and fine-grained customization (graph objects). Outputs interactive HTML or static images (PNG, PDF, SVG). --- # Plotly Python graphing library for creating interactive, publication-quality visualizations with 40+ chart types. ## Quick Start Install Plotly: ```bash uv pip install plotly ``` Basic usage with Plotly Express (high-level API): ```python import plotly.express as px import pandas as pd df = pd.DataFrame({ 'x': [1, 2, 3, 4], 'y': [10, 11, 12, 13] }) fig = px.scatter(df, x='x', y='y', title='My First Plot') fig.show() ``` ## Choosing Between APIs ### Use Plotly Express (px) For quick, standard visualizations with sensible defaults: - Working with pandas DataFrames - Creating common chart types (scatter, line, bar, histogram, etc.) - Need automatic color encoding and legends - Want minimal code (1-5 lines) See [reference/plotly-express.md](reference/plotly-express.md) for complete guide. ### Use Graph Objects (go) For fine-grained control and custom visualizations: - Chart types not in Plotly Express (3D mesh, isosurface, complex financial charts) - Building complex multi-trace figures from scratch - Need precise control over individual components - Creating specialized visualizations with custom shapes and annotations See [reference/graph-objects.md](reference/graph-objects.md) for complete guide. **Note:** Plotly Express returns graph objects Figure, so you can combine approaches: ```python fig = px.scatter(df, x='x', y='y') fig.update_layout(title='Custom Title') # Use go methods on px figure fig.add_hline(y=10) # Add shapes ``` ## Core Capabilities ### 1. Chart Types Plotly supports 40+ chart types organized into categories: **Basic Charts:** scatter, line, bar, pie, area, bubble **Statistical Charts:** histogram, box plot, violin, distribution, error bars **Scientific Charts:** heatmap, contour, ternary, image display **Financial Charts:** candlestick, OHLC, waterfall, funnel, time series **Maps:** scatter maps, choropleth, density maps (geographic visualization) **3D Charts:** scatter3d, surface, mesh, cone, volume **Specialized:** sunburst, treemap, sankey, parallel coordinates, gauge For detailed examples and usage of all chart types, see [reference/chart-types.md](reference/chart-types.md). ### 2. Layouts and Styling **Subplots:** Create multi-plot figures with shared axes: ```python from plotly.subplots import make_subplots import plotly.graph_objects as go fig = make_subplots(rows=2, cols=2, subplot_titles=('A', 'B', 'C', 'D')) fig.add_trace(go.Scatter(x=[1, 2], y=[3, 4]), row=1, col=1) ``` **Templates:** Apply coordinated styling: ```python fig = px.scatter(df, x='x', y='y', template='plotly_dark') # Built-in: plotly_white, plotly_dark, ggplot2, seaborn, simple_white ``` **Customization:** Control every aspect of appearance: - Colors (discrete sequences, continuous scales) - Fonts and text - Axes (ranges, ticks, grids) - Legends - Margins and sizing - Annotations and shapes For complete layout and styling options, see [reference/layouts-styling.md](reference/layouts-styling.md). ### 3. Interactivity Built-in interactive features: - Hover tooltips with customizable data - Pan and zoom - Legend toggling - Box/lasso selection - Rangesliders for time series - Buttons and dropdowns - Animations ```python # Custom hover template fig.update_traces( hovertemplate='%{x}
Value: %{y:.2f}' ) # Add rangeslider fig.update_xaxes(rangeslider_visible=True) # Animations fig = px.scatter(df, x='x', y='y', animation_frame='year') ``` For complete interactivity guide, see [reference/export-interactivity.md](reference/export-interactivity.md). ### 4. Export Options **Interactive HTML:** ```python fig.write_html('chart.html') # Full standalone fig.write_html('chart.html', include_plotlyjs='cdn') # Smaller file ``` **Static Images (requires kaleido):** ```bash uv pip install kaleido ``` ```python fig.write_image('chart.png') # PNG fig.write_image('chart.pdf') # PDF fig.write_image('chart.svg') # SVG ``` For complete export options, see [reference/export-interactivity.md](reference/export-interactivity.md). ## Common Workflows ### Scientific Data Visualization ```python import plotly.express as px # Scatter plot with trendline fig = px.scatter(df, x='temperature', y='yield', trendline='ols') # Heatmap from matrix fig = px.imshow(correlation_matrix, text_auto=True, color_continuous_scale='RdBu') # 3D surface plot import plotly.graph_objects as go fig = go.Figure(data=[go.Surface(z=z_data, x=x_data, y=y_data)]) ``` ### Statistical Analysis ```python # Distribution comparison fig = px.histogram(df, x='values', color='group', marginal='box', nbins=30) # Box plot with all points fig = px.box(df, x='category', y='value', points='all') # Violin plot fig = px.violin(df, x='group', y='measurement', box=True) ``` ### Time Series and Financial ```python # Time series with rangeslider fig = px.line(df, x='date', y='price') fig.update_xaxes(rangeslider_visible=True) # Candlestick chart import plotly.graph_objects as go fig = go.Figure(data=[go.Candlestick( x=df['date'], open=df['open'], high=df['high'], low=df['low'], close=df['close'] )]) ``` ### Multi-Plot Dashboards ```python from plotly.subplots import make_subplots import plotly.graph_objects as go fig = make_subplots( rows=2, cols=2, subplot_titles=('Scatter', 'Bar', 'Histogram', 'Box'), specs=[[{'type': 'scatter'}, {'type': 'bar'}], [{'type': 'histogram'}, {'type': 'box'}]] ) fig.add_trace(go.Scatter(x=[1, 2, 3], y=[4, 5, 6]), row=1, col=1) fig.add_trace(go.Bar(x=['A', 'B'], y=[1, 2]), row=1, col=2) fig.add_trace(go.Histogram(x=data), row=2, col=1) fig.add_trace(go.Box(y=data), row=2, col=2) fig.update_layout(height=800, showlegend=False) ``` ## Integration with Dash For interactive web applications, use Dash (Plotly's web app framework): ```bash uv pip install dash ``` ```python import dash from dash import dcc, html import plotly.express as px app = dash.Dash(__name__) fig = px.scatter(df, x='x', y='y') app.layout = html.Div([ html.H1('Dashboard'), dcc.Graph(figure=fig) ]) app.run_server(debug=True) ``` ## Reference Files - **[plotly-express.md](reference/plotly-express.md)** - High-level API for quick visualizations - **[graph-objects.md](reference/graph-objects.md)** - Low-level API for fine-grained control - **[chart-types.md](reference/chart-types.md)** - Complete catalog of 40+ chart types with examples - **[layouts-styling.md](reference/layouts-styling.md)** - Subplots, templates, colors, customization - **[export-interactivity.md](reference/export-interactivity.md)** - Export options and interactive features ## Additional Resources - Official documentation: https://plotly.com/python/ - API reference: https://plotly.com/python-api-reference/ - Community forum: https://community.plotly.com/