# Time Series Regression Aeon provides time series regressors across 9 categories for predicting continuous values from temporal sequences. ## Convolution-Based Regressors Apply convolutional kernels for feature extraction: - `HydraRegressor` - Multi-resolution dilated convolutions - `RocketRegressor` - Random convolutional kernels - `MiniRocketRegressor` - Simplified ROCKET for speed - `MultiRocketRegressor` - Combined ROCKET variants - `MultiRocketHydraRegressor` - Merges ROCKET and Hydra approaches **Use when**: Need fast regression with strong baseline performance. ## Deep Learning Regressors Neural architectures for end-to-end temporal regression: - `FCNRegressor` - Fully convolutional network - `ResNetRegressor` - Residual blocks with skip connections - `InceptionTimeRegressor` - Multi-scale inception modules - `TimeCNNRegressor` - Standard CNN architecture - `RecurrentRegressor` - RNN/LSTM/GRU variants - `MLPRegressor` - Multi-layer perceptron - `EncoderRegressor` - Generic encoder wrapper - `LITERegressor` - Lightweight inception time ensemble - `DisjointCNNRegressor` - Specialized CNN architecture **Use when**: Large datasets, complex patterns, or need feature learning. ## Distance-Based Regressors k-nearest neighbors with temporal distance metrics: - `KNeighborsTimeSeriesRegressor` - k-NN with DTW, LCSS, ERP, or other distances **Use when**: Small datasets, local similarity patterns, or interpretable predictions. ## Feature-Based Regressors Extract statistical features before regression: - `Catch22Regressor` - 22 canonical time-series characteristics - `FreshPRINCERegressor` - Pipeline combining multiple feature extractors - `SummaryRegressor` - Summary statistics features - `TSFreshRegressor` - Automated tsfresh feature extraction **Use when**: Need interpretable features or domain-specific feature engineering. ## Hybrid Regressors Combine multiple approaches: - `RISTRegressor` - Randomized Interval-Shapelet Transformation **Use when**: Benefit from combining interval and shapelet methods. ## Interval-Based Regressors Extract features from time intervals: - `CanonicalIntervalForestRegressor` - Random intervals with decision trees - `DrCIFRegressor` - Diverse Representation CIF - `TimeSeriesForestRegressor` - Random interval ensemble - `RandomIntervalRegressor` - Simple interval-based approach - `RandomIntervalSpectralEnsembleRegressor` - Spectral interval features - `QUANTRegressor` - Quantile-based interval features **Use when**: Predictive patterns occur in specific time windows. ## Shapelet-Based Regressors Use discriminative subsequences for prediction: - `RDSTRegressor` - Random Dilated Shapelet Transform **Use when**: Need phase-invariant discriminative patterns. ## Composition Tools Build custom regression pipelines: - `RegressorPipeline` - Chain transformers with regressors - `RegressorEnsemble` - Weighted ensemble with learnable weights - `SklearnRegressorWrapper` - Adapt sklearn regressors for time series ## Utilities - `DummyRegressor` - Baseline strategies (mean, median) - `BaseRegressor` - Abstract base for custom regressors - `BaseDeepRegressor` - Base for deep learning regressors ## Quick Start ```python from aeon.regression.convolution_based import RocketRegressor from aeon.datasets import load_regression # Load data X_train, y_train = load_regression("Covid3Month", split="train") X_test, y_test = load_regression("Covid3Month", split="test") # Train and predict reg = RocketRegressor() reg.fit(X_train, y_train) predictions = reg.predict(X_test) ``` ## Algorithm Selection - **Speed priority**: MiniRocketRegressor - **Accuracy priority**: InceptionTimeRegressor, MultiRocketHydraRegressor - **Interpretability**: Catch22Regressor, SummaryRegressor - **Small data**: KNeighborsTimeSeriesRegressor - **Large data**: Deep learning regressors, ROCKET variants - **Interval patterns**: DrCIFRegressor, CanonicalIntervalForestRegressor