# Training and Fine-Tuning ## Overview Fine-tune pre-trained models on custom datasets using the Trainer API. The Trainer handles training loops, gradient accumulation, mixed precision, logging, and checkpointing. ## Basic Fine-Tuning Workflow ### Step 1: Load and Preprocess Data ```python from datasets import load_dataset # Load dataset dataset = load_dataset("yelp_review_full") train_dataset = dataset["train"] eval_dataset = dataset["test"] # Tokenize from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") def tokenize_function(examples): return tokenizer( examples["text"], padding="max_length", truncation=True, max_length=512 ) train_dataset = train_dataset.map(tokenize_function, batched=True) eval_dataset = eval_dataset.map(tokenize_function, batched=True) ``` ### Step 2: Load Model ```python from transformers import AutoModelForSequenceClassification model = AutoModelForSequenceClassification.from_pretrained( "bert-base-uncased", num_labels=5 # Number of classes ) ``` ### Step 3: Define Metrics ```python import evaluate import numpy as np metric = evaluate.load("accuracy") def compute_metrics(eval_pred): logits, labels = eval_pred predictions = np.argmax(logits, axis=-1) return metric.compute(predictions=predictions, references=labels) ``` ### Step 4: Configure Training ```python from transformers import TrainingArguments training_args = TrainingArguments( output_dir="./results", eval_strategy="epoch", save_strategy="epoch", learning_rate=2e-5, per_device_train_batch_size=8, per_device_eval_batch_size=8, num_train_epochs=3, weight_decay=0.01, logging_dir="./logs", logging_steps=10, load_best_model_at_end=True, metric_for_best_model="accuracy", ) ``` ### Step 5: Create Trainer and Train ```python from transformers import Trainer trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=eval_dataset, compute_metrics=compute_metrics, ) # Start training trainer.train() # Evaluate results = trainer.evaluate() print(results) ``` ### Step 6: Save Model ```python trainer.save_model("./fine_tuned_model") tokenizer.save_pretrained("./fine_tuned_model") # Or push to Hub trainer.push_to_hub("username/my-finetuned-model") ``` ## TrainingArguments Parameters ### Essential Parameters **output_dir**: Directory for checkpoints and logs ```python output_dir="./results" ``` **num_train_epochs**: Number of training epochs ```python num_train_epochs=3 ``` **per_device_train_batch_size**: Batch size per GPU/CPU ```python per_device_train_batch_size=8 ``` **learning_rate**: Optimizer learning rate ```python learning_rate=2e-5 # Common for BERT-style models learning_rate=5e-5 # Common for smaller models ``` **weight_decay**: L2 regularization ```python weight_decay=0.01 ``` ### Evaluation and Saving **eval_strategy**: When to evaluate ("no", "steps", "epoch") ```python eval_strategy="epoch" # Evaluate after each epoch eval_strategy="steps" # Evaluate every eval_steps ``` **save_strategy**: When to save checkpoints ```python save_strategy="epoch" save_strategy="steps" save_steps=500 ``` **load_best_model_at_end**: Load best checkpoint after training ```python load_best_model_at_end=True metric_for_best_model="accuracy" # Metric to compare ``` ### Optimization **gradient_accumulation_steps**: Accumulate gradients over multiple steps ```python gradient_accumulation_steps=4 # Effective batch size = batch_size * 4 ``` **fp16**: Enable mixed precision (NVIDIA GPUs) ```python fp16=True ``` **bf16**: Enable bfloat16 (newer GPUs) ```python bf16=True ``` **gradient_checkpointing**: Trade compute for memory ```python gradient_checkpointing=True # Slower but uses less memory ``` **optim**: Optimizer choice ```python optim="adamw_torch" # Default optim="adamw_8bit" # 8-bit Adam (requires bitsandbytes) optim="adafactor" # Memory-efficient alternative ``` ### Learning Rate Scheduling **lr_scheduler_type**: Learning rate schedule ```python lr_scheduler_type="linear" # Linear decay lr_scheduler_type="cosine" # Cosine annealing lr_scheduler_type="constant" # No decay lr_scheduler_type="constant_with_warmup" ``` **warmup_steps** or **warmup_ratio**: Warmup period ```python warmup_steps=500 # Or warmup_ratio=0.1 # 10% of total steps ``` ### Logging **logging_dir**: TensorBoard logs directory ```python logging_dir="./logs" ``` **logging_steps**: Log every N steps ```python logging_steps=10 ``` **report_to**: Logging integrations ```python report_to=["tensorboard"] report_to=["wandb"] report_to=["tensorboard", "wandb"] ``` ### Distributed Training **ddp_backend**: Distributed backend ```python ddp_backend="nccl" # For multi-GPU ``` **deepspeed**: DeepSpeed config file ```python deepspeed="ds_config.json" ``` ## Data Collators Handle dynamic padding and special preprocessing: ### DataCollatorWithPadding Pad sequences to longest in batch: ```python from transformers import DataCollatorWithPadding data_collator = DataCollatorWithPadding(tokenizer=tokenizer) trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset, data_collator=data_collator, ) ``` ### DataCollatorForLanguageModeling For masked language modeling: ```python from transformers import DataCollatorForLanguageModeling data_collator = DataCollatorForLanguageModeling( tokenizer=tokenizer, mlm=True, mlm_probability=0.15 ) ``` ### DataCollatorForSeq2Seq For sequence-to-sequence tasks: ```python from transformers import DataCollatorForSeq2Seq data_collator = DataCollatorForSeq2Seq( tokenizer=tokenizer, model=model, padding=True ) ``` ## Custom Training ### Custom Trainer Override methods for custom behavior: ```python from transformers import Trainer class CustomTrainer(Trainer): def compute_loss(self, model, inputs, return_outputs=False): labels = inputs.pop("labels") outputs = model(**inputs) logits = outputs.logits # Custom loss computation loss_fct = torch.nn.CrossEntropyLoss(weight=class_weights) loss = loss_fct(logits.view(-1, self.model.config.num_labels), labels.view(-1)) return (loss, outputs) if return_outputs else loss ``` ### Custom Callbacks Monitor and control training: ```python from transformers import TrainerCallback class CustomCallback(TrainerCallback): def on_epoch_end(self, args, state, control, **kwargs): print(f"Epoch {state.epoch} completed") # Custom logic here return control trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset, callbacks=[CustomCallback], ) ``` ## Advanced Training Techniques ### Parameter-Efficient Fine-Tuning (PEFT) Use LoRA for efficient fine-tuning: ```python from peft import LoraConfig, get_peft_model lora_config = LoraConfig( r=16, lora_alpha=32, target_modules=["query", "value"], lora_dropout=0.05, bias="none", task_type="SEQ_CLS" ) model = get_peft_model(model, lora_config) model.print_trainable_parameters() # Shows reduced parameter count # Train normally with Trainer trainer = Trainer(model=model, args=training_args, ...) trainer.train() ``` ### Gradient Checkpointing Reduce memory at cost of speed: ```python model.gradient_checkpointing_enable() training_args = TrainingArguments( gradient_checkpointing=True, ... ) ``` ### Mixed Precision Training ```python training_args = TrainingArguments( fp16=True, # For NVIDIA GPUs with Tensor Cores # or bf16=True, # For newer GPUs (A100, H100) ... ) ``` ### DeepSpeed Integration For very large models: ```python # ds_config.json { "train_batch_size": 16, "gradient_accumulation_steps": 1, "optimizer": { "type": "AdamW", "params": { "lr": 2e-5 } }, "fp16": { "enabled": true }, "zero_optimization": { "stage": 2 } } ``` ```python training_args = TrainingArguments( deepspeed="ds_config.json", ... ) ``` ## Training Tips ### Hyperparameter Tuning Common starting points: - **Learning rate**: 2e-5 to 5e-5 for BERT-like models, 1e-4 to 1e-3 for smaller models - **Batch size**: 8-32 depending on GPU memory - **Epochs**: 2-4 for fine-tuning, more for domain adaptation - **Warmup**: 10% of total steps Use Optuna for hyperparameter search: ```python def model_init(): return AutoModelForSequenceClassification.from_pretrained( "bert-base-uncased", num_labels=5 ) def optuna_hp_space(trial): return { "learning_rate": trial.suggest_float("learning_rate", 1e-5, 5e-5, log=True), "per_device_train_batch_size": trial.suggest_categorical("per_device_train_batch_size", [8, 16, 32]), "num_train_epochs": trial.suggest_int("num_train_epochs", 2, 5), } trainer = Trainer(model_init=model_init, args=training_args, ...) best_trial = trainer.hyperparameter_search( direction="maximize", backend="optuna", hp_space=optuna_hp_space, n_trials=10, ) ``` ### Monitoring Training Use TensorBoard: ```bash tensorboard --logdir ./logs ``` Or Weights & Biases: ```python import wandb wandb.init(project="my-project") training_args = TrainingArguments( report_to=["wandb"], ... ) ``` ### Resume Training Resume from checkpoint: ```python trainer.train(resume_from_checkpoint="./results/checkpoint-1000") ``` ## Common Issues **CUDA out of memory:** - Reduce batch size - Enable gradient checkpointing - Use gradient accumulation - Use 8-bit optimizers **Overfitting:** - Increase weight_decay - Add dropout - Use early stopping - Reduce model size or training epochs **Slow training:** - Increase batch size - Enable mixed precision (fp16/bf16) - Use multiple GPUs - Optimize data loading ## Best Practices 1. **Start small**: Test on small dataset subset first 2. **Use evaluation**: Monitor validation metrics 3. **Save checkpoints**: Enable save_strategy 4. **Log extensively**: Use TensorBoard or W&B 5. **Try different learning rates**: Start with 2e-5 6. **Use warmup**: Helps training stability 7. **Enable mixed precision**: Faster training 8. **Consider PEFT**: For large models with limited resources