""" Multi-criteria decision making example using pymoo. This script demonstrates how to select preferred solutions from a Pareto front using various MCDM methods. """ from pymoo.algorithms.moo.nsga2 import NSGA2 from pymoo.problems import get_problem from pymoo.optimize import minimize from pymoo.mcdm.pseudo_weights import PseudoWeights from pymoo.visualization.scatter import Scatter from pymoo.visualization.petal import Petal import numpy as np def run_optimization_for_decision_making(): """Run optimization to obtain Pareto front.""" print("Running optimization to obtain Pareto front...") # Solve ZDT1 problem problem = get_problem("zdt1") algorithm = NSGA2(pop_size=100) result = minimize( problem, algorithm, ('n_gen', 200), seed=1, verbose=False ) print(f"Obtained {len(result.F)} solutions in Pareto front\n") return problem, result def apply_pseudo_weights(result, weights): """Apply pseudo-weights MCDM method.""" print(f"Applying Pseudo-Weights with weights: {weights}") # Normalize objectives to [0, 1] F_norm = (result.F - result.F.min(axis=0)) / (result.F.max(axis=0) - result.F.min(axis=0)) # Apply MCDM dm = PseudoWeights(weights) selected_idx = dm.do(F_norm) selected_x = result.X[selected_idx] selected_f = result.F[selected_idx] print(f"Selected solution (decision variables): {selected_x}") print(f"Selected solution (objectives): {selected_f}") print() return selected_idx, selected_x, selected_f def compare_different_preferences(result): """Compare selections with different preference weights.""" print("="*60) print("COMPARING DIFFERENT PREFERENCE WEIGHTS") print("="*60 + "\n") # Define different preference scenarios scenarios = [ ("Equal preference", np.array([0.5, 0.5])), ("Prefer f1", np.array([0.8, 0.2])), ("Prefer f2", np.array([0.2, 0.8])), ] selections = {} for name, weights in scenarios: print(f"Scenario: {name}") idx, x, f = apply_pseudo_weights(result, weights) selections[name] = (idx, f) # Visualize all selections plot = Scatter(title="Decision Making - Different Preferences") plot.add(result.F, color="lightgray", alpha=0.5, s=20, label="Pareto Front") colors = ["red", "blue", "green"] for (name, (idx, f)), color in zip(selections.items(), colors): plot.add(f, color=color, s=100, marker="*", label=name) plot.show() return selections def visualize_selected_solutions(result, selections): """Visualize selected solutions using petal diagram.""" # Get objective bounds for normalization f_min = result.F.min(axis=0) f_max = result.F.max(axis=0) plot = Petal( title="Selected Solutions Comparison", bounds=[f_min, f_max], labels=["f1", "f2"] ) colors = ["red", "blue", "green"] for (name, (idx, f)), color in zip(selections.items(), colors): plot.add(f, color=color, label=name) plot.show() def find_extreme_solutions(result): """Find extreme solutions (best in each objective).""" print("\n" + "="*60) print("EXTREME SOLUTIONS") print("="*60 + "\n") # Best f1 (minimize f1) best_f1_idx = np.argmin(result.F[:, 0]) print(f"Best f1 solution: {result.F[best_f1_idx]}") print(f" Decision variables: {result.X[best_f1_idx]}\n") # Best f2 (minimize f2) best_f2_idx = np.argmin(result.F[:, 1]) print(f"Best f2 solution: {result.F[best_f2_idx]}") print(f" Decision variables: {result.X[best_f2_idx]}\n") return best_f1_idx, best_f2_idx def main(): """Main execution function.""" # Step 1: Run optimization problem, result = run_optimization_for_decision_making() # Step 2: Find extreme solutions best_f1_idx, best_f2_idx = find_extreme_solutions(result) # Step 3: Compare different preference weights selections = compare_different_preferences(result) # Step 4: Visualize selections with petal diagram visualize_selected_solutions(result, selections) print("="*60) print("DECISION MAKING EXAMPLE COMPLETED") print("="*60) print("\nKey Takeaways:") print("1. Different weights lead to different selected solutions") print("2. Higher weight on an objective selects solutions better in that objective") print("3. Visualization helps understand trade-offs") print("4. MCDM methods help formalize decision maker preferences") if __name__ == "__main__": main()