Initial commit

This commit is contained in:
Zhongwei Li
2025-11-30 08:30:10 +08:00
commit f0bd18fb4e
824 changed files with 331919 additions and 0 deletions

View File

@@ -0,0 +1,398 @@
---
name: zinc-database
description: "Access ZINC (230M+ purchasable compounds). Search by ZINC ID/SMILES, similarity searches, 3D-ready structures for docking, analog discovery, for virtual screening and drug discovery."
---
# ZINC Database
## Overview
ZINC is a freely accessible repository of 230M+ purchasable compounds maintained by UCSF. Search by ZINC ID or SMILES, perform similarity searches, download 3D-ready structures for docking, discover analogs for virtual screening and drug discovery.
## When to Use This Skill
This skill should be used when:
- **Virtual screening**: Finding compounds for molecular docking studies
- **Lead discovery**: Identifying commercially-available compounds for drug development
- **Structure searches**: Performing similarity or analog searches by SMILES
- **Compound retrieval**: Looking up molecules by ZINC IDs or supplier codes
- **Chemical space exploration**: Exploring purchasable chemical diversity
- **Docking studies**: Accessing 3D-ready molecular structures
- **Analog searches**: Finding similar compounds based on structural similarity
- **Supplier queries**: Identifying compounds from specific chemical vendors
- **Random sampling**: Obtaining random compound sets for screening
## Database Versions
ZINC has evolved through multiple versions:
- **ZINC22** (Current): Largest version with 230+ million purchasable compounds and multi-billion scale make-on-demand compounds
- **ZINC20**: Still maintained, focused on lead-like and drug-like compounds
- **ZINC15**: Predecessor version, legacy but still documented
This skill primarily focuses on ZINC22, the most current and comprehensive version.
## Access Methods
### Web Interface
Primary access point: https://zinc.docking.org/
Interactive searching: https://cartblanche22.docking.org/
### API Access
All ZINC22 searches can be performed programmatically via the CartBlanche22 API:
**Base URL**: `https://cartblanche22.docking.org/`
All API endpoints return data in text or JSON format with customizable fields.
## Core Capabilities
### 1. Search by ZINC ID
Retrieve specific compounds using their ZINC identifiers.
**Web interface**: https://cartblanche22.docking.org/search/zincid
**API endpoint**:
```bash
curl "https://cartblanche22.docking.org/[email protected]_fields=smiles,zinc_id"
```
**Multiple IDs**:
```bash
curl "https://cartblanche22.docking.org/substances.txt:zinc_id=ZINC000000000001,ZINC000000000002&output_fields=smiles,zinc_id,tranche"
```
**Response fields**: `zinc_id`, `smiles`, `sub_id`, `supplier_code`, `catalogs`, `tranche` (includes H-count, LogP, MW, phase)
### 2. Search by SMILES
Find compounds by chemical structure using SMILES notation, with optional distance parameters for analog searching.
**Web interface**: https://cartblanche22.docking.org/search/smiles
**API endpoint**:
```bash
curl "https://cartblanche22.docking.org/[email protected]=4-Fadist=4"
```
**Parameters**:
- `smiles`: Query SMILES string (URL-encoded if necessary)
- `dist`: Tanimoto distance threshold (default: 0 for exact match)
- `adist`: Alternative distance parameter for broader searches (default: 0)
- `output_fields`: Comma-separated list of desired output fields
**Example - Exact match**:
```bash
curl "https://cartblanche22.docking.org/smiles.txt:smiles=c1ccccc1"
```
**Example - Similarity search**:
```bash
curl "https://cartblanche22.docking.org/smiles.txt:smiles=c1ccccc1&dist=3&output_fields=zinc_id,smiles,tranche"
```
### 3. Search by Supplier Codes
Query compounds from specific chemical suppliers or retrieve all molecules from particular catalogs.
**Web interface**: https://cartblanche22.docking.org/search/catitems
**API endpoint**:
```bash
curl "https://cartblanche22.docking.org/catitems.txt:catitem_id=SUPPLIER-CODE-123"
```
**Use cases**:
- Verify compound availability from specific vendors
- Retrieve all compounds from a catalog
- Cross-reference supplier codes with ZINC IDs
### 4. Random Compound Sampling
Generate random compound sets for screening or benchmarking purposes.
**Web interface**: https://cartblanche22.docking.org/search/random
**API endpoint**:
```bash
curl "https://cartblanche22.docking.org/substance/random.txt:count=100"
```
**Parameters**:
- `count`: Number of random compounds to retrieve (default: 100)
- `subset`: Filter by subset (e.g., 'lead-like', 'drug-like', 'fragment')
- `output_fields`: Customize returned data fields
**Example - Random lead-like molecules**:
```bash
curl "https://cartblanche22.docking.org/substance/random.txt:count=1000&subset=lead-like&output_fields=zinc_id,smiles,tranche"
```
## Common Workflows
### Workflow 1: Preparing a Docking Library
1. **Define search criteria** based on target properties or desired chemical space
2. **Query ZINC22** using appropriate search method:
```bash
# Example: Get drug-like compounds with specific LogP and MW
curl "https://cartblanche22.docking.org/substance/random.txt:count=10000&subset=drug-like&output_fields=zinc_id,smiles,tranche" > docking_library.txt
```
3. **Parse results** to extract ZINC IDs and SMILES:
```python
import pandas as pd
# Load results
df = pd.read_csv('docking_library.txt', sep='\t')
# Filter by properties in tranche data
# Tranche format: H##P###M###-phase
# H = H-bond donors, P = LogP*10, M = MW
```
4. **Download 3D structures** for docking using ZINC ID or download from file repositories
### Workflow 2: Finding Analogs of a Hit Compound
1. **Obtain SMILES** of the hit compound:
```python
hit_smiles = "CC(C)Cc1ccc(cc1)C(C)C(=O)O" # Example: Ibuprofen
```
2. **Perform similarity search** with distance threshold:
```bash
curl "https://cartblanche22.docking.org/smiles.txt:smiles=CC(C)Cc1ccc(cc1)C(C)C(=O)O&dist=5&output_fields=zinc_id,smiles,catalogs" > analogs.txt
```
3. **Analyze results** to identify purchasable analogs:
```python
import pandas as pd
analogs = pd.read_csv('analogs.txt', sep='\t')
print(f"Found {len(analogs)} analogs")
print(analogs[['zinc_id', 'smiles', 'catalogs']].head(10))
```
4. **Retrieve 3D structures** for the most promising analogs
### Workflow 3: Batch Compound Retrieval
1. **Compile list of ZINC IDs** from literature, databases, or previous screens:
```python
zinc_ids = [
"ZINC000000000001",
"ZINC000000000002",
"ZINC000000000003"
]
zinc_ids_str = ",".join(zinc_ids)
```
2. **Query ZINC22 API**:
```bash
curl "https://cartblanche22.docking.org/substances.txt:zinc_id=ZINC000000000001,ZINC000000000002&output_fields=zinc_id,smiles,supplier_code,catalogs"
```
3. **Process results** for downstream analysis or purchasing
### Workflow 4: Chemical Space Sampling
1. **Select subset parameters** based on screening goals:
- Fragment: MW < 250, good for fragment-based drug discovery
- Lead-like: MW 250-350, LogP ≤ 3.5
- Drug-like: MW 350-500, follows Lipinski's Rule of Five
2. **Generate random sample**:
```bash
curl "https://cartblanche22.docking.org/substance/random.txt:count=5000&subset=lead-like&output_fields=zinc_id,smiles,tranche" > chemical_space_sample.txt
```
3. **Analyze chemical diversity** and prepare for virtual screening
## Output Fields
Customize API responses with the `output_fields` parameter:
**Available fields**:
- `zinc_id`: ZINC identifier
- `smiles`: SMILES string representation
- `sub_id`: Internal substance ID
- `supplier_code`: Vendor catalog number
- `catalogs`: List of suppliers offering the compound
- `tranche`: Encoded molecular properties (H-count, LogP, MW, reactivity phase)
**Example**:
```bash
curl "https://cartblanche22.docking.org/substances.txt:zinc_id=ZINC000000000001&output_fields=zinc_id,smiles,catalogs,tranche"
```
## Tranche System
ZINC organizes compounds into "tranches" based on molecular properties:
**Format**: `H##P###M###-phase`
- **H##**: Number of hydrogen bond donors (00-99)
- **P###**: LogP × 10 (e.g., P035 = LogP 3.5)
- **M###**: Molecular weight in Daltons (e.g., M400 = 400 Da)
- **phase**: Reactivity classification
**Example tranche**: `H05P035M400-0`
- 5 H-bond donors
- LogP = 3.5
- MW = 400 Da
- Reactivity phase 0
Use tranche data to filter compounds by drug-likeness criteria.
## Downloading 3D Structures
For molecular docking, 3D structures are available via file repositories:
**File repository**: https://files.docking.org/zinc22/
Structures are organized by tranches and available in multiple formats:
- MOL2: Multi-molecule format with 3D coordinates
- SDF: Structure-data file format
- DB2.GZ: Compressed database format for DOCK
Refer to ZINC documentation at https://wiki.docking.org for downloading protocols and batch access methods.
## Python Integration
### Using curl with Python
```python
import subprocess
import json
def query_zinc_by_id(zinc_id, output_fields="zinc_id,smiles,catalogs"):
"""Query ZINC22 by ZINC ID."""
url = f"https://cartblanche22.docking.org/[email protected]_id={zinc_id}&output_fields={output_fields}"
result = subprocess.run(['curl', url], capture_output=True, text=True)
return result.stdout
def search_by_smiles(smiles, dist=0, adist=0, output_fields="zinc_id,smiles"):
"""Search ZINC22 by SMILES with optional distance parameters."""
url = f"https://cartblanche22.docking.org/smiles.txt:smiles={smiles}&dist={dist}&adist={adist}&output_fields={output_fields}"
result = subprocess.run(['curl', url], capture_output=True, text=True)
return result.stdout
def get_random_compounds(count=100, subset=None, output_fields="zinc_id,smiles,tranche"):
"""Get random compounds from ZINC22."""
url = f"https://cartblanche22.docking.org/substance/random.txt:count={count}&output_fields={output_fields}"
if subset:
url += f"&subset={subset}"
result = subprocess.run(['curl', url], capture_output=True, text=True)
return result.stdout
```
### Parsing Results
```python
import pandas as pd
from io import StringIO
# Query ZINC and parse as DataFrame
result = query_zinc_by_id("ZINC000000000001")
df = pd.read_csv(StringIO(result), sep='\t')
# Extract tranche properties
def parse_tranche(tranche_str):
"""Parse ZINC tranche code to extract properties."""
# Format: H##P###M###-phase
import re
match = re.match(r'H(\d+)P(\d+)M(\d+)-(\d+)', tranche_str)
if match:
return {
'h_donors': int(match.group(1)),
'logP': int(match.group(2)) / 10.0,
'mw': int(match.group(3)),
'phase': int(match.group(4))
}
return None
df['tranche_props'] = df['tranche'].apply(parse_tranche)
```
## Best Practices
### Query Optimization
- **Start specific**: Begin with exact searches before expanding to similarity searches
- **Use appropriate distance parameters**: Small dist values (1-3) for close analogs, larger (5-10) for diverse analogs
- **Limit output fields**: Request only necessary fields to reduce data transfer
- **Batch queries**: Combine multiple ZINC IDs in a single API call when possible
### Performance Considerations
- **Rate limiting**: Respect server resources; avoid rapid consecutive requests
- **Caching**: Store frequently accessed compounds locally
- **Parallel downloads**: When downloading 3D structures, use parallel wget or aria2c for file repositories
- **Subset filtering**: Use lead-like, drug-like, or fragment subsets to reduce search space
### Data Quality
- **Verify availability**: Supplier catalogs change; confirm compound availability before large orders
- **Check stereochemistry**: SMILES may not fully specify stereochemistry; verify 3D structures
- **Validate structures**: Use cheminformatics tools (RDKit, OpenBabel) to verify structure validity
- **Cross-reference**: When possible, cross-check with other databases (PubChem, ChEMBL)
## Resources
### references/api_reference.md
Comprehensive documentation including:
- Complete API endpoint reference
- URL syntax and parameter specifications
- Advanced query patterns and examples
- File repository organization and access
- Bulk download methods
- Error handling and troubleshooting
- Integration with molecular docking software
Consult this document for detailed technical information and advanced usage patterns.
## Important Disclaimers
### Data Reliability
ZINC explicitly states: **"We do not guarantee the quality of any molecule for any purpose and take no responsibility for errors arising from the use of this database."**
- Compound availability may change without notice
- Structure representations may contain errors
- Supplier information should be verified independently
- Use appropriate validation before experimental work
### Appropriate Use
- ZINC is intended for academic and research purposes in drug discovery
- Verify licensing terms for commercial use
- Respect intellectual property when working with patented compounds
- Follow your institution's guidelines for compound procurement
## Additional Resources
- **ZINC Website**: https://zinc.docking.org/
- **CartBlanche22 Interface**: https://cartblanche22.docking.org/
- **ZINC Wiki**: https://wiki.docking.org/
- **File Repository**: https://files.docking.org/zinc22/
- **GitHub**: https://github.com/docking-org/
- **Primary Publication**: Irwin et al., J. Chem. Inf. Model 2020 (ZINC15)
- **ZINC22 Publication**: Irwin et al., J. Chem. Inf. Model 2023
## Citations
When using ZINC in publications, cite the appropriate version:
**ZINC22**:
Irwin, J. J., et al. "ZINC22—A Free Multi-Billion-Scale Database of Tangible Compounds for Ligand Discovery." *Journal of Chemical Information and Modeling* 2023.
**ZINC15**:
Irwin, J. J., et al. "ZINC15 Ligand Discovery for Everyone." *Journal of Chemical Information and Modeling* 2020, 60, 60656073.