Initial commit
This commit is contained in:
398
skills/zinc-database/SKILL.md
Normal file
398
skills/zinc-database/SKILL.md
Normal file
@@ -0,0 +1,398 @@
|
||||
---
|
||||
name: zinc-database
|
||||
description: "Access ZINC (230M+ purchasable compounds). Search by ZINC ID/SMILES, similarity searches, 3D-ready structures for docking, analog discovery, for virtual screening and drug discovery."
|
||||
---
|
||||
|
||||
# ZINC Database
|
||||
|
||||
## Overview
|
||||
|
||||
ZINC is a freely accessible repository of 230M+ purchasable compounds maintained by UCSF. Search by ZINC ID or SMILES, perform similarity searches, download 3D-ready structures for docking, discover analogs for virtual screening and drug discovery.
|
||||
|
||||
## When to Use This Skill
|
||||
|
||||
This skill should be used when:
|
||||
|
||||
- **Virtual screening**: Finding compounds for molecular docking studies
|
||||
- **Lead discovery**: Identifying commercially-available compounds for drug development
|
||||
- **Structure searches**: Performing similarity or analog searches by SMILES
|
||||
- **Compound retrieval**: Looking up molecules by ZINC IDs or supplier codes
|
||||
- **Chemical space exploration**: Exploring purchasable chemical diversity
|
||||
- **Docking studies**: Accessing 3D-ready molecular structures
|
||||
- **Analog searches**: Finding similar compounds based on structural similarity
|
||||
- **Supplier queries**: Identifying compounds from specific chemical vendors
|
||||
- **Random sampling**: Obtaining random compound sets for screening
|
||||
|
||||
## Database Versions
|
||||
|
||||
ZINC has evolved through multiple versions:
|
||||
|
||||
- **ZINC22** (Current): Largest version with 230+ million purchasable compounds and multi-billion scale make-on-demand compounds
|
||||
- **ZINC20**: Still maintained, focused on lead-like and drug-like compounds
|
||||
- **ZINC15**: Predecessor version, legacy but still documented
|
||||
|
||||
This skill primarily focuses on ZINC22, the most current and comprehensive version.
|
||||
|
||||
## Access Methods
|
||||
|
||||
### Web Interface
|
||||
|
||||
Primary access point: https://zinc.docking.org/
|
||||
Interactive searching: https://cartblanche22.docking.org/
|
||||
|
||||
### API Access
|
||||
|
||||
All ZINC22 searches can be performed programmatically via the CartBlanche22 API:
|
||||
|
||||
**Base URL**: `https://cartblanche22.docking.org/`
|
||||
|
||||
All API endpoints return data in text or JSON format with customizable fields.
|
||||
|
||||
## Core Capabilities
|
||||
|
||||
### 1. Search by ZINC ID
|
||||
|
||||
Retrieve specific compounds using their ZINC identifiers.
|
||||
|
||||
**Web interface**: https://cartblanche22.docking.org/search/zincid
|
||||
|
||||
**API endpoint**:
|
||||
```bash
|
||||
curl "https://cartblanche22.docking.org/[email protected]_fields=smiles,zinc_id"
|
||||
```
|
||||
|
||||
**Multiple IDs**:
|
||||
```bash
|
||||
curl "https://cartblanche22.docking.org/substances.txt:zinc_id=ZINC000000000001,ZINC000000000002&output_fields=smiles,zinc_id,tranche"
|
||||
```
|
||||
|
||||
**Response fields**: `zinc_id`, `smiles`, `sub_id`, `supplier_code`, `catalogs`, `tranche` (includes H-count, LogP, MW, phase)
|
||||
|
||||
### 2. Search by SMILES
|
||||
|
||||
Find compounds by chemical structure using SMILES notation, with optional distance parameters for analog searching.
|
||||
|
||||
**Web interface**: https://cartblanche22.docking.org/search/smiles
|
||||
|
||||
**API endpoint**:
|
||||
```bash
|
||||
curl "https://cartblanche22.docking.org/[email protected]=4-Fadist=4"
|
||||
```
|
||||
|
||||
**Parameters**:
|
||||
- `smiles`: Query SMILES string (URL-encoded if necessary)
|
||||
- `dist`: Tanimoto distance threshold (default: 0 for exact match)
|
||||
- `adist`: Alternative distance parameter for broader searches (default: 0)
|
||||
- `output_fields`: Comma-separated list of desired output fields
|
||||
|
||||
**Example - Exact match**:
|
||||
```bash
|
||||
curl "https://cartblanche22.docking.org/smiles.txt:smiles=c1ccccc1"
|
||||
```
|
||||
|
||||
**Example - Similarity search**:
|
||||
```bash
|
||||
curl "https://cartblanche22.docking.org/smiles.txt:smiles=c1ccccc1&dist=3&output_fields=zinc_id,smiles,tranche"
|
||||
```
|
||||
|
||||
### 3. Search by Supplier Codes
|
||||
|
||||
Query compounds from specific chemical suppliers or retrieve all molecules from particular catalogs.
|
||||
|
||||
**Web interface**: https://cartblanche22.docking.org/search/catitems
|
||||
|
||||
**API endpoint**:
|
||||
```bash
|
||||
curl "https://cartblanche22.docking.org/catitems.txt:catitem_id=SUPPLIER-CODE-123"
|
||||
```
|
||||
|
||||
**Use cases**:
|
||||
- Verify compound availability from specific vendors
|
||||
- Retrieve all compounds from a catalog
|
||||
- Cross-reference supplier codes with ZINC IDs
|
||||
|
||||
### 4. Random Compound Sampling
|
||||
|
||||
Generate random compound sets for screening or benchmarking purposes.
|
||||
|
||||
**Web interface**: https://cartblanche22.docking.org/search/random
|
||||
|
||||
**API endpoint**:
|
||||
```bash
|
||||
curl "https://cartblanche22.docking.org/substance/random.txt:count=100"
|
||||
```
|
||||
|
||||
**Parameters**:
|
||||
- `count`: Number of random compounds to retrieve (default: 100)
|
||||
- `subset`: Filter by subset (e.g., 'lead-like', 'drug-like', 'fragment')
|
||||
- `output_fields`: Customize returned data fields
|
||||
|
||||
**Example - Random lead-like molecules**:
|
||||
```bash
|
||||
curl "https://cartblanche22.docking.org/substance/random.txt:count=1000&subset=lead-like&output_fields=zinc_id,smiles,tranche"
|
||||
```
|
||||
|
||||
## Common Workflows
|
||||
|
||||
### Workflow 1: Preparing a Docking Library
|
||||
|
||||
1. **Define search criteria** based on target properties or desired chemical space
|
||||
|
||||
2. **Query ZINC22** using appropriate search method:
|
||||
```bash
|
||||
# Example: Get drug-like compounds with specific LogP and MW
|
||||
curl "https://cartblanche22.docking.org/substance/random.txt:count=10000&subset=drug-like&output_fields=zinc_id,smiles,tranche" > docking_library.txt
|
||||
```
|
||||
|
||||
3. **Parse results** to extract ZINC IDs and SMILES:
|
||||
```python
|
||||
import pandas as pd
|
||||
|
||||
# Load results
|
||||
df = pd.read_csv('docking_library.txt', sep='\t')
|
||||
|
||||
# Filter by properties in tranche data
|
||||
# Tranche format: H##P###M###-phase
|
||||
# H = H-bond donors, P = LogP*10, M = MW
|
||||
```
|
||||
|
||||
4. **Download 3D structures** for docking using ZINC ID or download from file repositories
|
||||
|
||||
### Workflow 2: Finding Analogs of a Hit Compound
|
||||
|
||||
1. **Obtain SMILES** of the hit compound:
|
||||
```python
|
||||
hit_smiles = "CC(C)Cc1ccc(cc1)C(C)C(=O)O" # Example: Ibuprofen
|
||||
```
|
||||
|
||||
2. **Perform similarity search** with distance threshold:
|
||||
```bash
|
||||
curl "https://cartblanche22.docking.org/smiles.txt:smiles=CC(C)Cc1ccc(cc1)C(C)C(=O)O&dist=5&output_fields=zinc_id,smiles,catalogs" > analogs.txt
|
||||
```
|
||||
|
||||
3. **Analyze results** to identify purchasable analogs:
|
||||
```python
|
||||
import pandas as pd
|
||||
|
||||
analogs = pd.read_csv('analogs.txt', sep='\t')
|
||||
print(f"Found {len(analogs)} analogs")
|
||||
print(analogs[['zinc_id', 'smiles', 'catalogs']].head(10))
|
||||
```
|
||||
|
||||
4. **Retrieve 3D structures** for the most promising analogs
|
||||
|
||||
### Workflow 3: Batch Compound Retrieval
|
||||
|
||||
1. **Compile list of ZINC IDs** from literature, databases, or previous screens:
|
||||
```python
|
||||
zinc_ids = [
|
||||
"ZINC000000000001",
|
||||
"ZINC000000000002",
|
||||
"ZINC000000000003"
|
||||
]
|
||||
zinc_ids_str = ",".join(zinc_ids)
|
||||
```
|
||||
|
||||
2. **Query ZINC22 API**:
|
||||
```bash
|
||||
curl "https://cartblanche22.docking.org/substances.txt:zinc_id=ZINC000000000001,ZINC000000000002&output_fields=zinc_id,smiles,supplier_code,catalogs"
|
||||
```
|
||||
|
||||
3. **Process results** for downstream analysis or purchasing
|
||||
|
||||
### Workflow 4: Chemical Space Sampling
|
||||
|
||||
1. **Select subset parameters** based on screening goals:
|
||||
- Fragment: MW < 250, good for fragment-based drug discovery
|
||||
- Lead-like: MW 250-350, LogP ≤ 3.5
|
||||
- Drug-like: MW 350-500, follows Lipinski's Rule of Five
|
||||
|
||||
2. **Generate random sample**:
|
||||
```bash
|
||||
curl "https://cartblanche22.docking.org/substance/random.txt:count=5000&subset=lead-like&output_fields=zinc_id,smiles,tranche" > chemical_space_sample.txt
|
||||
```
|
||||
|
||||
3. **Analyze chemical diversity** and prepare for virtual screening
|
||||
|
||||
## Output Fields
|
||||
|
||||
Customize API responses with the `output_fields` parameter:
|
||||
|
||||
**Available fields**:
|
||||
- `zinc_id`: ZINC identifier
|
||||
- `smiles`: SMILES string representation
|
||||
- `sub_id`: Internal substance ID
|
||||
- `supplier_code`: Vendor catalog number
|
||||
- `catalogs`: List of suppliers offering the compound
|
||||
- `tranche`: Encoded molecular properties (H-count, LogP, MW, reactivity phase)
|
||||
|
||||
**Example**:
|
||||
```bash
|
||||
curl "https://cartblanche22.docking.org/substances.txt:zinc_id=ZINC000000000001&output_fields=zinc_id,smiles,catalogs,tranche"
|
||||
```
|
||||
|
||||
## Tranche System
|
||||
|
||||
ZINC organizes compounds into "tranches" based on molecular properties:
|
||||
|
||||
**Format**: `H##P###M###-phase`
|
||||
|
||||
- **H##**: Number of hydrogen bond donors (00-99)
|
||||
- **P###**: LogP × 10 (e.g., P035 = LogP 3.5)
|
||||
- **M###**: Molecular weight in Daltons (e.g., M400 = 400 Da)
|
||||
- **phase**: Reactivity classification
|
||||
|
||||
**Example tranche**: `H05P035M400-0`
|
||||
- 5 H-bond donors
|
||||
- LogP = 3.5
|
||||
- MW = 400 Da
|
||||
- Reactivity phase 0
|
||||
|
||||
Use tranche data to filter compounds by drug-likeness criteria.
|
||||
|
||||
## Downloading 3D Structures
|
||||
|
||||
For molecular docking, 3D structures are available via file repositories:
|
||||
|
||||
**File repository**: https://files.docking.org/zinc22/
|
||||
|
||||
Structures are organized by tranches and available in multiple formats:
|
||||
- MOL2: Multi-molecule format with 3D coordinates
|
||||
- SDF: Structure-data file format
|
||||
- DB2.GZ: Compressed database format for DOCK
|
||||
|
||||
Refer to ZINC documentation at https://wiki.docking.org for downloading protocols and batch access methods.
|
||||
|
||||
## Python Integration
|
||||
|
||||
### Using curl with Python
|
||||
|
||||
```python
|
||||
import subprocess
|
||||
import json
|
||||
|
||||
def query_zinc_by_id(zinc_id, output_fields="zinc_id,smiles,catalogs"):
|
||||
"""Query ZINC22 by ZINC ID."""
|
||||
url = f"https://cartblanche22.docking.org/[email protected]_id={zinc_id}&output_fields={output_fields}"
|
||||
result = subprocess.run(['curl', url], capture_output=True, text=True)
|
||||
return result.stdout
|
||||
|
||||
def search_by_smiles(smiles, dist=0, adist=0, output_fields="zinc_id,smiles"):
|
||||
"""Search ZINC22 by SMILES with optional distance parameters."""
|
||||
url = f"https://cartblanche22.docking.org/smiles.txt:smiles={smiles}&dist={dist}&adist={adist}&output_fields={output_fields}"
|
||||
result = subprocess.run(['curl', url], capture_output=True, text=True)
|
||||
return result.stdout
|
||||
|
||||
def get_random_compounds(count=100, subset=None, output_fields="zinc_id,smiles,tranche"):
|
||||
"""Get random compounds from ZINC22."""
|
||||
url = f"https://cartblanche22.docking.org/substance/random.txt:count={count}&output_fields={output_fields}"
|
||||
if subset:
|
||||
url += f"&subset={subset}"
|
||||
result = subprocess.run(['curl', url], capture_output=True, text=True)
|
||||
return result.stdout
|
||||
```
|
||||
|
||||
### Parsing Results
|
||||
|
||||
```python
|
||||
import pandas as pd
|
||||
from io import StringIO
|
||||
|
||||
# Query ZINC and parse as DataFrame
|
||||
result = query_zinc_by_id("ZINC000000000001")
|
||||
df = pd.read_csv(StringIO(result), sep='\t')
|
||||
|
||||
# Extract tranche properties
|
||||
def parse_tranche(tranche_str):
|
||||
"""Parse ZINC tranche code to extract properties."""
|
||||
# Format: H##P###M###-phase
|
||||
import re
|
||||
match = re.match(r'H(\d+)P(\d+)M(\d+)-(\d+)', tranche_str)
|
||||
if match:
|
||||
return {
|
||||
'h_donors': int(match.group(1)),
|
||||
'logP': int(match.group(2)) / 10.0,
|
||||
'mw': int(match.group(3)),
|
||||
'phase': int(match.group(4))
|
||||
}
|
||||
return None
|
||||
|
||||
df['tranche_props'] = df['tranche'].apply(parse_tranche)
|
||||
```
|
||||
|
||||
## Best Practices
|
||||
|
||||
### Query Optimization
|
||||
|
||||
- **Start specific**: Begin with exact searches before expanding to similarity searches
|
||||
- **Use appropriate distance parameters**: Small dist values (1-3) for close analogs, larger (5-10) for diverse analogs
|
||||
- **Limit output fields**: Request only necessary fields to reduce data transfer
|
||||
- **Batch queries**: Combine multiple ZINC IDs in a single API call when possible
|
||||
|
||||
### Performance Considerations
|
||||
|
||||
- **Rate limiting**: Respect server resources; avoid rapid consecutive requests
|
||||
- **Caching**: Store frequently accessed compounds locally
|
||||
- **Parallel downloads**: When downloading 3D structures, use parallel wget or aria2c for file repositories
|
||||
- **Subset filtering**: Use lead-like, drug-like, or fragment subsets to reduce search space
|
||||
|
||||
### Data Quality
|
||||
|
||||
- **Verify availability**: Supplier catalogs change; confirm compound availability before large orders
|
||||
- **Check stereochemistry**: SMILES may not fully specify stereochemistry; verify 3D structures
|
||||
- **Validate structures**: Use cheminformatics tools (RDKit, OpenBabel) to verify structure validity
|
||||
- **Cross-reference**: When possible, cross-check with other databases (PubChem, ChEMBL)
|
||||
|
||||
## Resources
|
||||
|
||||
### references/api_reference.md
|
||||
|
||||
Comprehensive documentation including:
|
||||
|
||||
- Complete API endpoint reference
|
||||
- URL syntax and parameter specifications
|
||||
- Advanced query patterns and examples
|
||||
- File repository organization and access
|
||||
- Bulk download methods
|
||||
- Error handling and troubleshooting
|
||||
- Integration with molecular docking software
|
||||
|
||||
Consult this document for detailed technical information and advanced usage patterns.
|
||||
|
||||
## Important Disclaimers
|
||||
|
||||
### Data Reliability
|
||||
|
||||
ZINC explicitly states: **"We do not guarantee the quality of any molecule for any purpose and take no responsibility for errors arising from the use of this database."**
|
||||
|
||||
- Compound availability may change without notice
|
||||
- Structure representations may contain errors
|
||||
- Supplier information should be verified independently
|
||||
- Use appropriate validation before experimental work
|
||||
|
||||
### Appropriate Use
|
||||
|
||||
- ZINC is intended for academic and research purposes in drug discovery
|
||||
- Verify licensing terms for commercial use
|
||||
- Respect intellectual property when working with patented compounds
|
||||
- Follow your institution's guidelines for compound procurement
|
||||
|
||||
## Additional Resources
|
||||
|
||||
- **ZINC Website**: https://zinc.docking.org/
|
||||
- **CartBlanche22 Interface**: https://cartblanche22.docking.org/
|
||||
- **ZINC Wiki**: https://wiki.docking.org/
|
||||
- **File Repository**: https://files.docking.org/zinc22/
|
||||
- **GitHub**: https://github.com/docking-org/
|
||||
- **Primary Publication**: Irwin et al., J. Chem. Inf. Model 2020 (ZINC15)
|
||||
- **ZINC22 Publication**: Irwin et al., J. Chem. Inf. Model 2023
|
||||
|
||||
## Citations
|
||||
|
||||
When using ZINC in publications, cite the appropriate version:
|
||||
|
||||
**ZINC22**:
|
||||
Irwin, J. J., et al. "ZINC22—A Free Multi-Billion-Scale Database of Tangible Compounds for Ligand Discovery." *Journal of Chemical Information and Modeling* 2023.
|
||||
|
||||
**ZINC15**:
|
||||
Irwin, J. J., et al. "ZINC15 – Ligand Discovery for Everyone." *Journal of Chemical Information and Modeling* 2020, 60, 6065–6073.
|
||||
692
skills/zinc-database/references/api_reference.md
Normal file
692
skills/zinc-database/references/api_reference.md
Normal file
@@ -0,0 +1,692 @@
|
||||
# ZINC Database API Reference
|
||||
|
||||
## Overview
|
||||
|
||||
Complete technical reference for programmatic access to the ZINC database, covering API endpoints, query syntax, parameters, response formats, and advanced usage patterns for ZINC22, ZINC20, and legacy versions.
|
||||
|
||||
## Base URLs
|
||||
|
||||
### ZINC22 (Current)
|
||||
- **CartBlanche22 API**: `https://cartblanche22.docking.org/`
|
||||
- **File Repository**: `https://files.docking.org/zinc22/`
|
||||
- **Main Website**: `https://zinc.docking.org/`
|
||||
|
||||
### ZINC20 (Maintained)
|
||||
- **API**: `https://zinc20.docking.org/`
|
||||
- **File Repository**: `https://files.docking.org/zinc20/`
|
||||
|
||||
### Documentation
|
||||
- **Wiki**: `https://wiki.docking.org/`
|
||||
- **GitHub**: `https://github.com/docking-org/`
|
||||
|
||||
## API Endpoints
|
||||
|
||||
### 1. Substance Retrieval by ZINC ID
|
||||
|
||||
Retrieve compound information using ZINC identifiers.
|
||||
|
||||
**Endpoint**: `/substances.txt`
|
||||
|
||||
**Parameters**:
|
||||
- `zinc_id` (required): Single ZINC ID or comma-separated list
|
||||
- `output_fields` (optional): Comma-separated field names (default: all fields)
|
||||
|
||||
**URL Format**:
|
||||
```
|
||||
https://cartblanche22.docking.org/substances.txt:zinc_id={ZINC_ID}&output_fields={FIELDS}
|
||||
```
|
||||
|
||||
**Examples**:
|
||||
|
||||
Single compound:
|
||||
```bash
|
||||
curl "https://cartblanche22.docking.org/[email protected]_fields=zinc_id,smiles,catalogs"
|
||||
```
|
||||
|
||||
Multiple compounds:
|
||||
```bash
|
||||
curl "https://cartblanche22.docking.org/substances.txt:zinc_id=ZINC000000000001,ZINC000000000002,ZINC000000000003&output_fields=zinc_id,smiles,tranche"
|
||||
```
|
||||
|
||||
Batch retrieval from file:
|
||||
```bash
|
||||
# Create file with ZINC IDs (one per line or comma-separated)
|
||||
curl -X POST "https://cartblanche22.docking.org/substances.txt?output_fields=zinc_id,smiles" \
|
||||
-F "zinc_id=@zinc_ids.txt"
|
||||
```
|
||||
|
||||
**Response Format** (TSV):
|
||||
```
|
||||
zinc_id smiles catalogs
|
||||
ZINC000000000001 CC(C)O [vendor1,vendor2]
|
||||
ZINC000000000002 c1ccccc1 [vendor3]
|
||||
```
|
||||
|
||||
### 2. Structure Search by SMILES
|
||||
|
||||
Search for compounds by chemical structure with optional similarity thresholds.
|
||||
|
||||
**Endpoint**: `/smiles.txt`
|
||||
|
||||
**Parameters**:
|
||||
- `smiles` (required): Query SMILES string (URL-encode if necessary)
|
||||
- `dist` (optional): Tanimoto distance threshold (0-10, default: 0 = exact)
|
||||
- `adist` (optional): Alternative distance metric (0-10, default: 0)
|
||||
- `output_fields` (optional): Comma-separated field names
|
||||
|
||||
**URL Format**:
|
||||
```
|
||||
https://cartblanche22.docking.org/smiles.txt:smiles={SMILES}&dist={DIST}&adist={ADIST}&output_fields={FIELDS}
|
||||
```
|
||||
|
||||
**Examples**:
|
||||
|
||||
Exact structure match:
|
||||
```bash
|
||||
curl "https://cartblanche22.docking.org/smiles.txt:smiles=c1ccccc1&output_fields=zinc_id,smiles"
|
||||
```
|
||||
|
||||
Similarity search (Tanimoto distance = 3):
|
||||
```bash
|
||||
curl "https://cartblanche22.docking.org/smiles.txt:smiles=CC(C)Cc1ccc(cc1)C(C)C(=O)O&dist=3&output_fields=zinc_id,smiles,catalogs"
|
||||
```
|
||||
|
||||
Broad similarity search:
|
||||
```bash
|
||||
curl "https://cartblanche22.docking.org/smiles.txt:smiles=c1ccccc1&dist=5&adist=5&output_fields=zinc_id,smiles,tranche"
|
||||
```
|
||||
|
||||
URL-encoded SMILES (for special characters):
|
||||
```bash
|
||||
# Original: CC(=O)Oc1ccccc1C(=O)O
|
||||
# Encoded: CC%28%3DO%29Oc1ccccc1C%28%3DO%29O
|
||||
curl "https://cartblanche22.docking.org/smiles.txt:smiles=CC%28%3DO%29Oc1ccccc1C%28%3DO%29O&dist=2"
|
||||
```
|
||||
|
||||
**Distance Parameters Interpretation**:
|
||||
- `dist=0`: Exact match
|
||||
- `dist=1-3`: Close analogs (high similarity)
|
||||
- `dist=4-6`: Moderate analogs
|
||||
- `dist=7-10`: Diverse chemical space
|
||||
|
||||
### 3. Supplier Code Search
|
||||
|
||||
Query compounds by vendor catalog numbers.
|
||||
|
||||
**Endpoint**: `/catitems.txt`
|
||||
|
||||
**Parameters**:
|
||||
- `catitem_id` (required): Supplier catalog code
|
||||
- `output_fields` (optional): Comma-separated field names
|
||||
|
||||
**URL Format**:
|
||||
```
|
||||
https://cartblanche22.docking.org/catitems.txt:catitem_id={SUPPLIER_CODE}&output_fields={FIELDS}
|
||||
```
|
||||
|
||||
**Example**:
|
||||
```bash
|
||||
curl "https://cartblanche22.docking.org/catitems.txt:catitem_id=SUPPLIER-12345&output_fields=zinc_id,smiles,supplier_code,catalogs"
|
||||
```
|
||||
|
||||
### 4. Random Compound Sampling
|
||||
|
||||
Generate random compound sets with optional filtering by chemical properties.
|
||||
|
||||
**Endpoint**: `/substance/random.txt`
|
||||
|
||||
**Parameters**:
|
||||
- `count` (optional): Number of compounds to retrieve (default: 100, max: depends on server)
|
||||
- `subset` (optional): Filter by predefined subset (e.g., 'lead-like', 'drug-like', 'fragment')
|
||||
- `output_fields` (optional): Comma-separated field names
|
||||
|
||||
**URL Format**:
|
||||
```
|
||||
https://cartblanche22.docking.org/substance/random.txt:count={COUNT}&subset={SUBSET}&output_fields={FIELDS}
|
||||
```
|
||||
|
||||
**Examples**:
|
||||
|
||||
Random 100 compounds (default):
|
||||
```bash
|
||||
curl "https://cartblanche22.docking.org/substance/random.txt"
|
||||
```
|
||||
|
||||
Random lead-like molecules:
|
||||
```bash
|
||||
curl "https://cartblanche22.docking.org/substance/random.txt:count=1000&subset=lead-like&output_fields=zinc_id,smiles,tranche"
|
||||
```
|
||||
|
||||
Random drug-like molecules:
|
||||
```bash
|
||||
curl "https://cartblanche22.docking.org/substance/random.txt:count=5000&subset=drug-like&output_fields=zinc_id,smiles"
|
||||
```
|
||||
|
||||
Random fragments:
|
||||
```bash
|
||||
curl "https://cartblanche22.docking.org/substance/random.txt:count=500&subset=fragment&output_fields=zinc_id,smiles,tranche"
|
||||
```
|
||||
|
||||
**Subset Definitions**:
|
||||
- `fragment`: MW < 250, suitable for fragment-based drug discovery
|
||||
- `lead-like`: MW 250-350, LogP ≤ 3.5, rotatable bonds ≤ 7
|
||||
- `drug-like`: MW 350-500, follows Lipinski's Rule of Five
|
||||
- `lugs`: Large, unusually good subset (highly curated)
|
||||
|
||||
## Output Fields
|
||||
|
||||
### Available Fields
|
||||
|
||||
Customize API responses using the `output_fields` parameter:
|
||||
|
||||
| Field | Description | Example |
|
||||
|-------|-------------|---------|
|
||||
| `zinc_id` | ZINC identifier | ZINC000000000001 |
|
||||
| `smiles` | Canonical SMILES string | CC(C)O |
|
||||
| `sub_id` | Internal substance ID | 123456 |
|
||||
| `supplier_code` | Vendor catalog number | AB-1234567 |
|
||||
| `catalogs` | List of suppliers | [emolecules, mcule, mcule-ultimate] |
|
||||
| `tranche` | Encoded molecular properties | H02P025M300-0 |
|
||||
| `mwt` | Molecular weight | 325.45 |
|
||||
| `logp` | LogP (partition coefficient) | 2.5 |
|
||||
| `hba` | H-bond acceptors | 4 |
|
||||
| `hbd` | H-bond donors | 2 |
|
||||
| `rotatable_bonds` | Rotatable bonds count | 5 |
|
||||
|
||||
**Note**: Not all fields are available for all endpoints. Field availability depends on the database version and endpoint.
|
||||
|
||||
### Default Fields
|
||||
|
||||
If `output_fields` is not specified, endpoints return all available fields in TSV format.
|
||||
|
||||
### Custom Field Selection
|
||||
|
||||
Request specific fields only:
|
||||
```bash
|
||||
curl "https://cartblanche22.docking.org/[email protected]_fields=zinc_id,smiles"
|
||||
```
|
||||
|
||||
Request multiple fields:
|
||||
```bash
|
||||
curl "https://cartblanche22.docking.org/[email protected]_fields=zinc_id,smiles,tranche,catalogs"
|
||||
```
|
||||
|
||||
## Tranche System
|
||||
|
||||
ZINC organizes compounds into tranches based on molecular properties for efficient filtering and organization.
|
||||
|
||||
### Tranche Code Format
|
||||
|
||||
**Pattern**: `H##P###M###-phase`
|
||||
|
||||
| Component | Description | Range |
|
||||
|-----------|-------------|-------|
|
||||
| H## | Hydrogen bond donors | 00-99 |
|
||||
| P### | LogP × 10 | 000-999 (e.g., P035 = LogP 3.5) |
|
||||
| M### | Molecular weight | 000-999 Da |
|
||||
| phase | Reactivity classification | 0-9 |
|
||||
|
||||
### Examples
|
||||
|
||||
| Tranche Code | Interpretation |
|
||||
|--------------|----------------|
|
||||
| `H00P010M250-0` | 0 H-donors, LogP=1.0, MW=250 Da, phase 0 |
|
||||
| `H05P035M400-0` | 5 H-donors, LogP=3.5, MW=400 Da, phase 0 |
|
||||
| `H02P-005M180-0` | 2 H-donors, LogP=-0.5, MW=180 Da, phase 0 |
|
||||
|
||||
### Reactivity Phases
|
||||
|
||||
| Phase | Description |
|
||||
|-------|-------------|
|
||||
| 0 | Unreactive (preferred for screening) |
|
||||
| 1-9 | Increasing reactivity (PAINS, reactive groups) |
|
||||
|
||||
### Parsing Tranches in Python
|
||||
|
||||
```python
|
||||
import re
|
||||
|
||||
def parse_tranche(tranche_str):
|
||||
"""
|
||||
Parse ZINC tranche code.
|
||||
|
||||
Args:
|
||||
tranche_str: Tranche code (e.g., "H05P035M400-0")
|
||||
|
||||
Returns:
|
||||
dict with h_donors, logp, mw, phase
|
||||
"""
|
||||
pattern = r'H(\d+)P(-?\d+)M(\d+)-(\d+)'
|
||||
match = re.match(pattern, tranche_str)
|
||||
|
||||
if not match:
|
||||
return None
|
||||
|
||||
return {
|
||||
'h_donors': int(match.group(1)),
|
||||
'logp': int(match.group(2)) / 10.0,
|
||||
'mw': int(match.group(3)),
|
||||
'phase': int(match.group(4))
|
||||
}
|
||||
|
||||
# Example usage
|
||||
tranche = "H05P035M400-0"
|
||||
props = parse_tranche(tranche)
|
||||
print(props) # {'h_donors': 5, 'logp': 3.5, 'mw': 400, 'phase': 0}
|
||||
```
|
||||
|
||||
### Filtering by Tranches
|
||||
|
||||
Download specific tranches from file repositories:
|
||||
```bash
|
||||
# Download all compounds in a specific tranche
|
||||
wget https://files.docking.org/zinc22/H05/H05P035M400-0.db2.gz
|
||||
```
|
||||
|
||||
## File Repository Access
|
||||
|
||||
### Directory Structure
|
||||
|
||||
ZINC22 3D structures are organized hierarchically by H-bond donors:
|
||||
|
||||
```
|
||||
https://files.docking.org/zinc22/
|
||||
├── H00/
|
||||
│ ├── H00P010M200-0.db2.gz
|
||||
│ ├── H00P020M250-0.db2.gz
|
||||
│ └── ...
|
||||
├── H01/
|
||||
├── H02/
|
||||
└── ...
|
||||
```
|
||||
|
||||
### File Formats
|
||||
|
||||
| Extension | Format | Description |
|
||||
|-----------|--------|-------------|
|
||||
| `.db2.gz` | DOCK database | Compressed multi-conformer DB for DOCK |
|
||||
| `.mol2.gz` | MOL2 | Multi-molecule format with 3D coordinates |
|
||||
| `.sdf.gz` | SDF | Structure-Data File format |
|
||||
| `.smi` | SMILES | Plain text SMILES with ZINC IDs |
|
||||
|
||||
### Downloading 3D Structures
|
||||
|
||||
**Single tranche**:
|
||||
```bash
|
||||
wget https://files.docking.org/zinc22/H05/H05P035M400-0.db2.gz
|
||||
```
|
||||
|
||||
**Multiple tranches** (parallel download with aria2c):
|
||||
```bash
|
||||
# Create URL list
|
||||
cat > tranche_urls.txt <<EOF
|
||||
https://files.docking.org/zinc22/H05/H05P035M400-0.db2.gz
|
||||
https://files.docking.org/zinc22/H05/H05P035M400-0.db2.gz
|
||||
https://files.docking.org/zinc22/H05/H05P040M400-0.db2.gz
|
||||
EOF
|
||||
|
||||
# Download in parallel
|
||||
aria2c -i tranche_urls.txt -x 8 -j 4
|
||||
```
|
||||
|
||||
**Recursive download** (use with caution - large data):
|
||||
```bash
|
||||
wget -r -np -nH --cut-dirs=1 -A "*.db2.gz" \
|
||||
https://files.docking.org/zinc22/H05/
|
||||
```
|
||||
|
||||
### Extracting Structures
|
||||
|
||||
```bash
|
||||
# Decompress
|
||||
gunzip H05P035M400-0.db2.gz
|
||||
|
||||
# Convert to other formats using OpenBabel
|
||||
obabel H05P035M400-0.db2 -O output.sdf
|
||||
obabel H05P035M400-0.db2 -O output.mol2
|
||||
```
|
||||
|
||||
## Advanced Query Patterns
|
||||
|
||||
### Combining Multiple Search Criteria
|
||||
|
||||
**Python wrapper for complex queries**:
|
||||
|
||||
```python
|
||||
import subprocess
|
||||
import pandas as pd
|
||||
from io import StringIO
|
||||
|
||||
def advanced_zinc_search(smiles=None, zinc_ids=None, dist=0,
|
||||
subset=None, count=None, output_fields=None):
|
||||
"""
|
||||
Flexible ZINC search with multiple criteria.
|
||||
|
||||
Args:
|
||||
smiles: SMILES string for structure search
|
||||
zinc_ids: List of ZINC IDs for batch retrieval
|
||||
dist: Distance parameter for similarity (0-10)
|
||||
subset: Subset filter (lead-like, drug-like, fragment)
|
||||
count: Number of random compounds
|
||||
output_fields: List of fields to return
|
||||
|
||||
Returns:
|
||||
pandas DataFrame with results
|
||||
"""
|
||||
if output_fields is None:
|
||||
output_fields = ['zinc_id', 'smiles', 'tranche', 'catalogs']
|
||||
|
||||
fields_str = ','.join(output_fields)
|
||||
|
||||
# Structure search
|
||||
if smiles:
|
||||
url = f"https://cartblanche22.docking.org/smiles.txt:smiles={smiles}&dist={dist}&output_fields={fields_str}"
|
||||
|
||||
# Batch retrieval
|
||||
elif zinc_ids:
|
||||
zinc_ids_str = ','.join(zinc_ids)
|
||||
url = f"https://cartblanche22.docking.org/substances.txt:zinc_id={zinc_ids_str}&output_fields={fields_str}"
|
||||
|
||||
# Random sampling
|
||||
elif count:
|
||||
url = f"https://cartblanche22.docking.org/substance/random.txt:count={count}&output_fields={fields_str}"
|
||||
if subset:
|
||||
url += f"&subset={subset}"
|
||||
|
||||
else:
|
||||
raise ValueError("Must specify smiles, zinc_ids, or count")
|
||||
|
||||
# Execute query
|
||||
result = subprocess.run(['curl', '-s', url],
|
||||
capture_output=True, text=True)
|
||||
|
||||
# Parse to DataFrame
|
||||
df = pd.read_csv(StringIO(result.stdout), sep='\t')
|
||||
|
||||
return df
|
||||
```
|
||||
|
||||
**Usage examples**:
|
||||
|
||||
```python
|
||||
# Find similar compounds
|
||||
df = advanced_zinc_search(
|
||||
smiles="CC(C)Cc1ccc(cc1)C(C)C(=O)O",
|
||||
dist=3,
|
||||
output_fields=['zinc_id', 'smiles', 'catalogs']
|
||||
)
|
||||
|
||||
# Batch retrieval
|
||||
zinc_ids = ["ZINC000000000001", "ZINC000000000002"]
|
||||
df = advanced_zinc_search(zinc_ids=zinc_ids)
|
||||
|
||||
# Random drug-like set
|
||||
df = advanced_zinc_search(
|
||||
count=1000,
|
||||
subset='drug-like',
|
||||
output_fields=['zinc_id', 'smiles', 'tranche']
|
||||
)
|
||||
```
|
||||
|
||||
### Property-Based Filtering
|
||||
|
||||
Filter compounds by molecular properties using tranche data:
|
||||
|
||||
```python
|
||||
def filter_by_properties(df, mw_range=None, logp_range=None,
|
||||
max_hbd=None, phase=0):
|
||||
"""
|
||||
Filter DataFrame by molecular properties.
|
||||
|
||||
Args:
|
||||
df: DataFrame with 'tranche' column
|
||||
mw_range: Tuple (min_mw, max_mw)
|
||||
logp_range: Tuple (min_logp, max_logp)
|
||||
max_hbd: Maximum H-bond donors
|
||||
phase: Reactivity phase (0 = unreactive)
|
||||
|
||||
Returns:
|
||||
Filtered DataFrame
|
||||
"""
|
||||
# Parse tranches
|
||||
df['tranche_props'] = df['tranche'].apply(parse_tranche)
|
||||
df['mw'] = df['tranche_props'].apply(lambda x: x['mw'] if x else None)
|
||||
df['logp'] = df['tranche_props'].apply(lambda x: x['logp'] if x else None)
|
||||
df['hbd'] = df['tranche_props'].apply(lambda x: x['h_donors'] if x else None)
|
||||
df['phase'] = df['tranche_props'].apply(lambda x: x['phase'] if x else None)
|
||||
|
||||
# Apply filters
|
||||
mask = pd.Series([True] * len(df))
|
||||
|
||||
if mw_range:
|
||||
mask &= (df['mw'] >= mw_range[0]) & (df['mw'] <= mw_range[1])
|
||||
|
||||
if logp_range:
|
||||
mask &= (df['logp'] >= logp_range[0]) & (df['logp'] <= logp_range[1])
|
||||
|
||||
if max_hbd is not None:
|
||||
mask &= df['hbd'] <= max_hbd
|
||||
|
||||
if phase is not None:
|
||||
mask &= df['phase'] == phase
|
||||
|
||||
return df[mask]
|
||||
|
||||
# Example: Get drug-like compounds with specific properties
|
||||
df = advanced_zinc_search(count=10000, subset='drug-like')
|
||||
filtered = filter_by_properties(
|
||||
df,
|
||||
mw_range=(300, 450),
|
||||
logp_range=(1.0, 4.0),
|
||||
max_hbd=3,
|
||||
phase=0
|
||||
)
|
||||
```
|
||||
|
||||
## Rate Limiting and Best Practices
|
||||
|
||||
### Rate Limiting
|
||||
|
||||
ZINC does not publish explicit rate limits, but users should:
|
||||
|
||||
- **Avoid rapid-fire requests**: Space out queries by at least 1 second
|
||||
- **Use batch operations**: Query multiple ZINC IDs in single request
|
||||
- **Cache results**: Store frequently accessed data locally
|
||||
- **Off-peak usage**: Perform large downloads during off-peak hours (UTC nights/weekends)
|
||||
|
||||
### Etiquette
|
||||
|
||||
```python
|
||||
import time
|
||||
|
||||
def polite_zinc_query(query_func, *args, delay=1.0, **kwargs):
|
||||
"""Wrapper to add delay between queries."""
|
||||
result = query_func(*args, **kwargs)
|
||||
time.sleep(delay)
|
||||
return result
|
||||
```
|
||||
|
||||
### Error Handling
|
||||
|
||||
```python
|
||||
def robust_zinc_query(url, max_retries=3, timeout=30):
|
||||
"""
|
||||
Query ZINC with retry logic.
|
||||
|
||||
Args:
|
||||
url: Full ZINC API URL
|
||||
max_retries: Maximum retry attempts
|
||||
timeout: Request timeout in seconds
|
||||
|
||||
Returns:
|
||||
Query results or None on failure
|
||||
"""
|
||||
import subprocess
|
||||
import time
|
||||
|
||||
for attempt in range(max_retries):
|
||||
try:
|
||||
result = subprocess.run(
|
||||
['curl', '-s', '--max-time', str(timeout), url],
|
||||
capture_output=True,
|
||||
text=True,
|
||||
check=True
|
||||
)
|
||||
|
||||
# Check for empty or error responses
|
||||
if not result.stdout or 'error' in result.stdout.lower():
|
||||
raise ValueError("Invalid response")
|
||||
|
||||
return result.stdout
|
||||
|
||||
except (subprocess.CalledProcessError, ValueError) as e:
|
||||
if attempt < max_retries - 1:
|
||||
wait_time = 2 ** attempt # Exponential backoff
|
||||
print(f"Retry {attempt + 1}/{max_retries} after {wait_time}s...")
|
||||
time.sleep(wait_time)
|
||||
else:
|
||||
print(f"Failed after {max_retries} attempts")
|
||||
return None
|
||||
```
|
||||
|
||||
## Integration with Molecular Docking
|
||||
|
||||
### Preparing DOCK6 Libraries
|
||||
|
||||
```bash
|
||||
# 1. Download tranche files
|
||||
wget https://files.docking.org/zinc22/H05/H05P035M400-0.db2.gz
|
||||
|
||||
# 2. Decompress
|
||||
gunzip H05P035M400-0.db2.gz
|
||||
|
||||
# 3. Use directly with DOCK6
|
||||
dock6 -i dock.in -o dock.out -l H05P035M400-0.db2
|
||||
```
|
||||
|
||||
### AutoDock Vina Integration
|
||||
|
||||
```bash
|
||||
# 1. Download MOL2 format
|
||||
wget https://files.docking.org/zinc22/H05/H05P035M400-0.mol2.gz
|
||||
gunzip H05P035M400-0.mol2.gz
|
||||
|
||||
# 2. Convert to PDBQT using prepare_ligand script
|
||||
prepare_ligand4.py -l H05P035M400-0.mol2 -o ligands.pdbqt -A hydrogens
|
||||
|
||||
# 3. Run Vina
|
||||
vina --receptor protein.pdbqt --ligand ligands.pdbqt \
|
||||
--center_x 25.0 --center_y 25.0 --center_z 25.0 \
|
||||
--size_x 20.0 --size_y 20.0 --size_z 20.0
|
||||
```
|
||||
|
||||
### RDKit Integration
|
||||
|
||||
```python
|
||||
from rdkit import Chem
|
||||
from rdkit.Chem import AllChem, Descriptors
|
||||
import pandas as pd
|
||||
|
||||
def process_zinc_results(zinc_df):
|
||||
"""
|
||||
Process ZINC results with RDKit.
|
||||
|
||||
Args:
|
||||
zinc_df: DataFrame with SMILES column
|
||||
|
||||
Returns:
|
||||
DataFrame with calculated properties
|
||||
"""
|
||||
# Convert SMILES to molecules
|
||||
zinc_df['mol'] = zinc_df['smiles'].apply(Chem.MolFromSmiles)
|
||||
|
||||
# Calculate properties
|
||||
zinc_df['mw'] = zinc_df['mol'].apply(Descriptors.MolWt)
|
||||
zinc_df['logp'] = zinc_df['mol'].apply(Descriptors.MolLogP)
|
||||
zinc_df['hbd'] = zinc_df['mol'].apply(Descriptors.NumHDonors)
|
||||
zinc_df['hba'] = zinc_df['mol'].apply(Descriptors.NumHAcceptors)
|
||||
zinc_df['tpsa'] = zinc_df['mol'].apply(Descriptors.TPSA)
|
||||
zinc_df['rotatable'] = zinc_df['mol'].apply(Descriptors.NumRotatableBonds)
|
||||
|
||||
# Generate 3D conformers
|
||||
for mol in zinc_df['mol']:
|
||||
if mol:
|
||||
AllChem.EmbedMolecule(mol, randomSeed=42)
|
||||
AllChem.MMFFOptimizeMolecule(mol)
|
||||
|
||||
return zinc_df
|
||||
|
||||
# Save to SDF for docking
|
||||
def save_to_sdf(zinc_df, output_file):
|
||||
"""Save molecules to SDF file."""
|
||||
writer = Chem.SDWriter(output_file)
|
||||
for idx, row in zinc_df.iterrows():
|
||||
if row['mol']:
|
||||
row['mol'].SetProp('ZINC_ID', row['zinc_id'])
|
||||
writer.write(row['mol'])
|
||||
writer.close()
|
||||
```
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
### Common Issues
|
||||
|
||||
**Issue**: Empty or no results
|
||||
- **Solution**: Check SMILES syntax, verify ZINC IDs exist, try broader similarity search
|
||||
|
||||
**Issue**: Timeout errors
|
||||
- **Solution**: Reduce result count, use batch queries, try during off-peak hours
|
||||
|
||||
**Issue**: Invalid SMILES encoding
|
||||
- **Solution**: URL-encode special characters (use `urllib.parse.quote()` in Python)
|
||||
|
||||
**Issue**: Tranche files not found
|
||||
- **Solution**: Verify tranche code format, check file repository structure
|
||||
|
||||
### Debug Mode
|
||||
|
||||
```python
|
||||
def debug_zinc_query(url):
|
||||
"""Print query details for debugging."""
|
||||
print(f"Query URL: {url}")
|
||||
|
||||
result = subprocess.run(['curl', '-v', url],
|
||||
capture_output=True, text=True)
|
||||
|
||||
print(f"Status: {result.returncode}")
|
||||
print(f"Stderr: {result.stderr}")
|
||||
print(f"Stdout length: {len(result.stdout)}")
|
||||
print(f"First 500 chars:\n{result.stdout[:500]}")
|
||||
|
||||
return result.stdout
|
||||
```
|
||||
|
||||
## Version Differences
|
||||
|
||||
### ZINC22 vs ZINC20 vs ZINC15
|
||||
|
||||
| Feature | ZINC22 | ZINC20 | ZINC15 |
|
||||
|---------|--------|--------|--------|
|
||||
| Compounds | 230M+ purchasable | Focused on leads | ~750M total |
|
||||
| API | CartBlanche22 | Similar | REST-like |
|
||||
| Tranches | Yes | Yes | Yes |
|
||||
| 3D Structures | Yes | Yes | Yes |
|
||||
| Status | Current, growing | Maintained | Legacy |
|
||||
|
||||
### API Compatibility
|
||||
|
||||
Most query patterns work across versions, but URLs differ:
|
||||
- ZINC22: `cartblanche22.docking.org`
|
||||
- ZINC20: `zinc20.docking.org`
|
||||
- ZINC15: `zinc15.docking.org`
|
||||
|
||||
## Additional Resources
|
||||
|
||||
- **ZINC Wiki**: https://wiki.docking.org/
|
||||
- **ZINC22 Documentation**: https://wiki.docking.org/index.php/Category:ZINC22
|
||||
- **ZINC API Guide**: https://wiki.docking.org/index.php/ZINC_api
|
||||
- **File Access Guide**: https://wiki.docking.org/index.php/ZINC22:Getting_started
|
||||
- **Publications**:
|
||||
- ZINC22: J. Chem. Inf. Model. 2023
|
||||
- ZINC15: J. Chem. Inf. Model. 2020, 60, 6065-6073
|
||||
- **Support**: Contact via ZINC website or GitHub issues
|
||||
Reference in New Issue
Block a user