Initial commit

This commit is contained in:
Zhongwei Li
2025-11-30 08:30:10 +08:00
commit f0bd18fb4e
824 changed files with 331919 additions and 0 deletions

773
skills/zarr-python/SKILL.md Normal file
View File

@@ -0,0 +1,773 @@
---
name: zarr-python
description: "Chunked N-D arrays for cloud storage. Compressed arrays, parallel I/O, S3/GCS integration, NumPy/Dask/Xarray compatible, for large-scale scientific computing pipelines."
---
# Zarr Python
## Overview
Zarr is a Python library for storing large N-dimensional arrays with chunking and compression. Apply this skill for efficient parallel I/O, cloud-native workflows, and seamless integration with NumPy, Dask, and Xarray.
## Quick Start
### Installation
```bash
uv pip install zarr
```
Requires Python 3.11+. For cloud storage support, install additional packages:
```python
uv pip install s3fs # For S3
uv pip install gcsfs # For Google Cloud Storage
```
### Basic Array Creation
```python
import zarr
import numpy as np
# Create a 2D array with chunking and compression
z = zarr.create_array(
store="data/my_array.zarr",
shape=(10000, 10000),
chunks=(1000, 1000),
dtype="f4"
)
# Write data using NumPy-style indexing
z[:, :] = np.random.random((10000, 10000))
# Read data
data = z[0:100, 0:100] # Returns NumPy array
```
## Core Operations
### Creating Arrays
Zarr provides multiple convenience functions for array creation:
```python
# Create empty array
z = zarr.zeros(shape=(10000, 10000), chunks=(1000, 1000), dtype='f4',
store='data.zarr')
# Create filled arrays
z = zarr.ones((5000, 5000), chunks=(500, 500))
z = zarr.full((1000, 1000), fill_value=42, chunks=(100, 100))
# Create from existing data
data = np.arange(10000).reshape(100, 100)
z = zarr.array(data, chunks=(10, 10), store='data.zarr')
# Create like another array
z2 = zarr.zeros_like(z) # Matches shape, chunks, dtype of z
```
### Opening Existing Arrays
```python
# Open array (read/write mode by default)
z = zarr.open_array('data.zarr', mode='r+')
# Read-only mode
z = zarr.open_array('data.zarr', mode='r')
# The open() function auto-detects arrays vs groups
z = zarr.open('data.zarr') # Returns Array or Group
```
### Reading and Writing Data
Zarr arrays support NumPy-like indexing:
```python
# Write entire array
z[:] = 42
# Write slices
z[0, :] = np.arange(100)
z[10:20, 50:60] = np.random.random((10, 10))
# Read data (returns NumPy array)
data = z[0:100, 0:100]
row = z[5, :]
# Advanced indexing
z.vindex[[0, 5, 10], [2, 8, 15]] # Coordinate indexing
z.oindex[0:10, [5, 10, 15]] # Orthogonal indexing
z.blocks[0, 0] # Block/chunk indexing
```
### Resizing and Appending
```python
# Resize array
z.resize(15000, 15000) # Expands or shrinks dimensions
# Append data along an axis
z.append(np.random.random((1000, 10000)), axis=0) # Adds rows
```
## Chunking Strategies
Chunking is critical for performance. Choose chunk sizes and shapes based on access patterns.
### Chunk Size Guidelines
- **Minimum chunk size**: 1 MB recommended for optimal performance
- **Balance**: Larger chunks = fewer metadata operations; smaller chunks = better parallel access
- **Memory consideration**: Entire chunks must fit in memory during compression
```python
# Configure chunk size (aim for ~1MB per chunk)
# For float32 data: 1MB = 262,144 elements = 512×512 array
z = zarr.zeros(
shape=(10000, 10000),
chunks=(512, 512), # ~1MB chunks
dtype='f4'
)
```
### Aligning Chunks with Access Patterns
**Critical**: Chunk shape dramatically affects performance based on how data is accessed.
```python
# If accessing rows frequently (first dimension)
z = zarr.zeros((10000, 10000), chunks=(10, 10000)) # Chunk spans columns
# If accessing columns frequently (second dimension)
z = zarr.zeros((10000, 10000), chunks=(10000, 10)) # Chunk spans rows
# For mixed access patterns (balanced approach)
z = zarr.zeros((10000, 10000), chunks=(1000, 1000)) # Square chunks
```
**Performance example**: For a (200, 200, 200) array, reading along the first dimension:
- Using chunks (1, 200, 200): ~107ms
- Using chunks (200, 200, 1): ~1.65ms (65× faster!)
### Sharding for Large-Scale Storage
When arrays have millions of small chunks, use sharding to group chunks into larger storage objects:
```python
from zarr.codecs import ShardingCodec, BytesCodec
from zarr.codecs.blosc import BloscCodec
# Create array with sharding
z = zarr.create_array(
store='data.zarr',
shape=(100000, 100000),
chunks=(100, 100), # Small chunks for access
shards=(1000, 1000), # Groups 100 chunks per shard
dtype='f4'
)
```
**Benefits**:
- Reduces file system overhead from millions of small files
- Improves cloud storage performance (fewer object requests)
- Prevents filesystem block size waste
**Important**: Entire shards must fit in memory before writing.
## Compression
Zarr applies compression per chunk to reduce storage while maintaining fast access.
### Configuring Compression
```python
from zarr.codecs.blosc import BloscCodec
from zarr.codecs import GzipCodec, ZstdCodec
# Default: Blosc with Zstandard
z = zarr.zeros((1000, 1000), chunks=(100, 100)) # Uses default compression
# Configure Blosc codec
z = zarr.create_array(
store='data.zarr',
shape=(1000, 1000),
chunks=(100, 100),
dtype='f4',
codecs=[BloscCodec(cname='zstd', clevel=5, shuffle='shuffle')]
)
# Available Blosc compressors: 'blosclz', 'lz4', 'lz4hc', 'snappy', 'zlib', 'zstd'
# Use Gzip compression
z = zarr.create_array(
store='data.zarr',
shape=(1000, 1000),
chunks=(100, 100),
dtype='f4',
codecs=[GzipCodec(level=6)]
)
# Disable compression
z = zarr.create_array(
store='data.zarr',
shape=(1000, 1000),
chunks=(100, 100),
dtype='f4',
codecs=[BytesCodec()] # No compression
)
```
### Compression Performance Tips
- **Blosc** (default): Fast compression/decompression, good for interactive workloads
- **Zstandard**: Better compression ratios, slightly slower than LZ4
- **Gzip**: Maximum compression, slower performance
- **LZ4**: Fastest compression, lower ratios
- **Shuffle**: Enable shuffle filter for better compression on numeric data
```python
# Optimal for numeric scientific data
codecs=[BloscCodec(cname='zstd', clevel=5, shuffle='shuffle')]
# Optimal for speed
codecs=[BloscCodec(cname='lz4', clevel=1)]
# Optimal for compression ratio
codecs=[GzipCodec(level=9)]
```
## Storage Backends
Zarr supports multiple storage backends through a flexible storage interface.
### Local Filesystem (Default)
```python
from zarr.storage import LocalStore
# Explicit store creation
store = LocalStore('data/my_array.zarr')
z = zarr.open_array(store=store, mode='w', shape=(1000, 1000), chunks=(100, 100))
# Or use string path (creates LocalStore automatically)
z = zarr.open_array('data/my_array.zarr', mode='w', shape=(1000, 1000),
chunks=(100, 100))
```
### In-Memory Storage
```python
from zarr.storage import MemoryStore
# Create in-memory store
store = MemoryStore()
z = zarr.open_array(store=store, mode='w', shape=(1000, 1000), chunks=(100, 100))
# Data exists only in memory, not persisted
```
### ZIP File Storage
```python
from zarr.storage import ZipStore
# Write to ZIP file
store = ZipStore('data.zip', mode='w')
z = zarr.open_array(store=store, mode='w', shape=(1000, 1000), chunks=(100, 100))
z[:] = np.random.random((1000, 1000))
store.close() # IMPORTANT: Must close ZipStore
# Read from ZIP file
store = ZipStore('data.zip', mode='r')
z = zarr.open_array(store=store)
data = z[:]
store.close()
```
### Cloud Storage (S3, GCS)
```python
import s3fs
import zarr
# S3 storage
s3 = s3fs.S3FileSystem(anon=False) # Use credentials
store = s3fs.S3Map(root='my-bucket/path/to/array.zarr', s3=s3)
z = zarr.open_array(store=store, mode='w', shape=(1000, 1000), chunks=(100, 100))
z[:] = data
# Google Cloud Storage
import gcsfs
gcs = gcsfs.GCSFileSystem(project='my-project')
store = gcsfs.GCSMap(root='my-bucket/path/to/array.zarr', gcs=gcs)
z = zarr.open_array(store=store, mode='w', shape=(1000, 1000), chunks=(100, 100))
```
**Cloud Storage Best Practices**:
- Use consolidated metadata to reduce latency: `zarr.consolidate_metadata(store)`
- Align chunk sizes with cloud object sizing (typically 5-100 MB optimal)
- Enable parallel writes using Dask for large-scale data
- Consider sharding to reduce number of objects
## Groups and Hierarchies
Groups organize multiple arrays hierarchically, similar to directories or HDF5 groups.
### Creating and Using Groups
```python
# Create root group
root = zarr.group(store='data/hierarchy.zarr')
# Create sub-groups
temperature = root.create_group('temperature')
precipitation = root.create_group('precipitation')
# Create arrays within groups
temp_array = temperature.create_array(
name='t2m',
shape=(365, 720, 1440),
chunks=(1, 720, 1440),
dtype='f4'
)
precip_array = precipitation.create_array(
name='prcp',
shape=(365, 720, 1440),
chunks=(1, 720, 1440),
dtype='f4'
)
# Access using paths
array = root['temperature/t2m']
# Visualize hierarchy
print(root.tree())
# Output:
# /
# ├── temperature
# │ └── t2m (365, 720, 1440) f4
# └── precipitation
# └── prcp (365, 720, 1440) f4
```
### H5py-Compatible API
Zarr provides an h5py-compatible interface for familiar HDF5 users:
```python
# Create group with h5py-style methods
root = zarr.group('data.zarr')
dataset = root.create_dataset('my_data', shape=(1000, 1000), chunks=(100, 100),
dtype='f4')
# Access like h5py
grp = root.require_group('subgroup')
arr = grp.require_dataset('array', shape=(500, 500), chunks=(50, 50), dtype='i4')
```
## Attributes and Metadata
Attach custom metadata to arrays and groups using attributes:
```python
# Add attributes to array
z = zarr.zeros((1000, 1000), chunks=(100, 100))
z.attrs['description'] = 'Temperature data in Kelvin'
z.attrs['units'] = 'K'
z.attrs['created'] = '2024-01-15'
z.attrs['processing_version'] = 2.1
# Attributes are stored as JSON
print(z.attrs['units']) # Output: K
# Add attributes to groups
root = zarr.group('data.zarr')
root.attrs['project'] = 'Climate Analysis'
root.attrs['institution'] = 'Research Institute'
# Attributes persist with the array/group
z2 = zarr.open('data.zarr')
print(z2.attrs['description'])
```
**Important**: Attributes must be JSON-serializable (strings, numbers, lists, dicts, booleans, null).
## Integration with NumPy, Dask, and Xarray
### NumPy Integration
Zarr arrays implement the NumPy array interface:
```python
import numpy as np
import zarr
z = zarr.zeros((1000, 1000), chunks=(100, 100))
# Use NumPy functions directly
result = np.sum(z, axis=0) # NumPy operates on Zarr array
mean = np.mean(z[:100, :100])
# Convert to NumPy array
numpy_array = z[:] # Loads entire array into memory
```
### Dask Integration
Dask provides lazy, parallel computation on Zarr arrays:
```python
import dask.array as da
import zarr
# Create large Zarr array
z = zarr.open('data.zarr', mode='w', shape=(100000, 100000),
chunks=(1000, 1000), dtype='f4')
# Load as Dask array (lazy, no data loaded)
dask_array = da.from_zarr('data.zarr')
# Perform computations (parallel, out-of-core)
result = dask_array.mean(axis=0).compute() # Parallel computation
# Write Dask array to Zarr
large_array = da.random.random((100000, 100000), chunks=(1000, 1000))
da.to_zarr(large_array, 'output.zarr')
```
**Benefits**:
- Process datasets larger than memory
- Automatic parallel computation across chunks
- Efficient I/O with chunked storage
### Xarray Integration
Xarray provides labeled, multidimensional arrays with Zarr backend:
```python
import xarray as xr
import zarr
# Open Zarr store as Xarray Dataset (lazy loading)
ds = xr.open_zarr('data.zarr')
# Dataset includes coordinates and metadata
print(ds)
# Access variables
temperature = ds['temperature']
# Perform labeled operations
subset = ds.sel(time='2024-01', lat=slice(30, 60))
# Write Xarray Dataset to Zarr
ds.to_zarr('output.zarr')
# Create from scratch with coordinates
ds = xr.Dataset(
{
'temperature': (['time', 'lat', 'lon'], data),
'precipitation': (['time', 'lat', 'lon'], data2)
},
coords={
'time': pd.date_range('2024-01-01', periods=365),
'lat': np.arange(-90, 91, 1),
'lon': np.arange(-180, 180, 1)
}
)
ds.to_zarr('climate_data.zarr')
```
**Benefits**:
- Named dimensions and coordinates
- Label-based indexing and selection
- Integration with pandas for time series
- NetCDF-like interface familiar to climate/geospatial scientists
## Parallel Computing and Synchronization
### Thread-Safe Operations
```python
from zarr import ThreadSynchronizer
import zarr
# For multi-threaded writes
synchronizer = ThreadSynchronizer()
z = zarr.open_array('data.zarr', mode='r+', shape=(10000, 10000),
chunks=(1000, 1000), synchronizer=synchronizer)
# Safe for concurrent writes from multiple threads
# (when writes don't span chunk boundaries)
```
### Process-Safe Operations
```python
from zarr import ProcessSynchronizer
import zarr
# For multi-process writes
synchronizer = ProcessSynchronizer('sync_data.sync')
z = zarr.open_array('data.zarr', mode='r+', shape=(10000, 10000),
chunks=(1000, 1000), synchronizer=synchronizer)
# Safe for concurrent writes from multiple processes
```
**Note**:
- Concurrent reads require no synchronization
- Synchronization only needed for writes that may span chunk boundaries
- Each process/thread writing to separate chunks needs no synchronization
## Consolidated Metadata
For hierarchical stores with many arrays, consolidate metadata into a single file to reduce I/O operations:
```python
import zarr
# After creating arrays/groups
root = zarr.group('data.zarr')
# ... create multiple arrays/groups ...
# Consolidate metadata
zarr.consolidate_metadata('data.zarr')
# Open with consolidated metadata (faster, especially on cloud storage)
root = zarr.open_consolidated('data.zarr')
```
**Benefits**:
- Reduces metadata read operations from N (one per array) to 1
- Critical for cloud storage (reduces latency)
- Speeds up `tree()` operations and group traversal
**Cautions**:
- Metadata can become stale if arrays update without re-consolidation
- Not suitable for frequently-updated datasets
- Multi-writer scenarios may have inconsistent reads
## Performance Optimization
### Checklist for Optimal Performance
1. **Chunk Size**: Aim for 1-10 MB per chunk
```python
# For float32: 1MB = 262,144 elements
chunks = (512, 512) # 512×512×4 bytes = ~1MB
```
2. **Chunk Shape**: Align with access patterns
```python
# Row-wise access → chunk spans columns: (small, large)
# Column-wise access → chunk spans rows: (large, small)
# Random access → balanced: (medium, medium)
```
3. **Compression**: Choose based on workload
```python
# Interactive/fast: BloscCodec(cname='lz4')
# Balanced: BloscCodec(cname='zstd', clevel=5)
# Maximum compression: GzipCodec(level=9)
```
4. **Storage Backend**: Match to environment
```python
# Local: LocalStore (default)
# Cloud: S3Map/GCSMap with consolidated metadata
# Temporary: MemoryStore
```
5. **Sharding**: Use for large-scale datasets
```python
# When you have millions of small chunks
shards=(10*chunk_size, 10*chunk_size)
```
6. **Parallel I/O**: Use Dask for large operations
```python
import dask.array as da
dask_array = da.from_zarr('data.zarr')
result = dask_array.compute(scheduler='threads', num_workers=8)
```
### Profiling and Debugging
```python
# Print detailed array information
print(z.info)
# Output includes:
# - Type, shape, chunks, dtype
# - Compression codec and level
# - Storage size (compressed vs uncompressed)
# - Storage location
# Check storage size
print(f"Compressed size: {z.nbytes_stored / 1e6:.2f} MB")
print(f"Uncompressed size: {z.nbytes / 1e6:.2f} MB")
print(f"Compression ratio: {z.nbytes / z.nbytes_stored:.2f}x")
```
## Common Patterns and Best Practices
### Pattern: Time Series Data
```python
# Store time series with time as first dimension
# This allows efficient appending of new time steps
z = zarr.open('timeseries.zarr', mode='a',
shape=(0, 720, 1440), # Start with 0 time steps
chunks=(1, 720, 1440), # One time step per chunk
dtype='f4')
# Append new time steps
new_data = np.random.random((1, 720, 1440))
z.append(new_data, axis=0)
```
### Pattern: Large Matrix Operations
```python
import dask.array as da
# Create large matrix in Zarr
z = zarr.open('matrix.zarr', mode='w',
shape=(100000, 100000),
chunks=(1000, 1000),
dtype='f8')
# Use Dask for parallel computation
dask_z = da.from_zarr('matrix.zarr')
result = (dask_z @ dask_z.T).compute() # Parallel matrix multiply
```
### Pattern: Cloud-Native Workflow
```python
import s3fs
import zarr
# Write to S3
s3 = s3fs.S3FileSystem()
store = s3fs.S3Map(root='s3://my-bucket/data.zarr', s3=s3)
# Create array with appropriate chunking for cloud
z = zarr.open_array(store=store, mode='w',
shape=(10000, 10000),
chunks=(500, 500), # ~1MB chunks
dtype='f4')
z[:] = data
# Consolidate metadata for faster reads
zarr.consolidate_metadata(store)
# Read from S3 (anywhere, anytime)
store_read = s3fs.S3Map(root='s3://my-bucket/data.zarr', s3=s3)
z_read = zarr.open_consolidated(store_read)
subset = z_read[0:100, 0:100]
```
### Pattern: Format Conversion
```python
# HDF5 to Zarr
import h5py
import zarr
with h5py.File('data.h5', 'r') as h5:
dataset = h5['dataset_name']
z = zarr.array(dataset[:],
chunks=(1000, 1000),
store='data.zarr')
# NumPy to Zarr
import numpy as np
data = np.load('data.npy')
z = zarr.array(data, chunks='auto', store='data.zarr')
# Zarr to NetCDF (via Xarray)
import xarray as xr
ds = xr.open_zarr('data.zarr')
ds.to_netcdf('data.nc')
```
## Common Issues and Solutions
### Issue: Slow Performance
**Diagnosis**: Check chunk size and alignment
```python
print(z.chunks) # Are chunks appropriate size?
print(z.info) # Check compression ratio
```
**Solutions**:
- Increase chunk size to 1-10 MB
- Align chunks with access pattern
- Try different compression codecs
- Use Dask for parallel operations
### Issue: High Memory Usage
**Cause**: Loading entire array or large chunks into memory
**Solutions**:
```python
# Don't load entire array
# Bad: data = z[:]
# Good: Process in chunks
for i in range(0, z.shape[0], 1000):
chunk = z[i:i+1000, :]
process(chunk)
# Or use Dask for automatic chunking
import dask.array as da
dask_z = da.from_zarr('data.zarr')
result = dask_z.mean().compute() # Processes in chunks
```
### Issue: Cloud Storage Latency
**Solutions**:
```python
# 1. Consolidate metadata
zarr.consolidate_metadata(store)
z = zarr.open_consolidated(store)
# 2. Use appropriate chunk sizes (5-100 MB for cloud)
chunks = (2000, 2000) # Larger chunks for cloud
# 3. Enable sharding
shards = (10000, 10000) # Groups many chunks
```
### Issue: Concurrent Write Conflicts
**Solution**: Use synchronizers or ensure non-overlapping writes
```python
from zarr import ProcessSynchronizer
sync = ProcessSynchronizer('sync.sync')
z = zarr.open_array('data.zarr', mode='r+', synchronizer=sync)
# Or design workflow so each process writes to separate chunks
```
## Additional Resources
For detailed API documentation, advanced usage, and the latest updates:
- **Official Documentation**: https://zarr.readthedocs.io/
- **Zarr Specifications**: https://zarr-specs.readthedocs.io/
- **GitHub Repository**: https://github.com/zarr-developers/zarr-python
- **Community Chat**: https://gitter.im/zarr-developers/community
**Related Libraries**:
- **Xarray**: https://docs.xarray.dev/ (labeled arrays)
- **Dask**: https://docs.dask.org/ (parallel computing)
- **NumCodecs**: https://numcodecs.readthedocs.io/ (compression codecs)