Initial commit
This commit is contained in:
500
skills/transformers/references/training.md
Normal file
500
skills/transformers/references/training.md
Normal file
@@ -0,0 +1,500 @@
|
||||
# Training and Fine-Tuning
|
||||
|
||||
## Overview
|
||||
|
||||
Fine-tune pre-trained models on custom datasets using the Trainer API. The Trainer handles training loops, gradient accumulation, mixed precision, logging, and checkpointing.
|
||||
|
||||
## Basic Fine-Tuning Workflow
|
||||
|
||||
### Step 1: Load and Preprocess Data
|
||||
|
||||
```python
|
||||
from datasets import load_dataset
|
||||
|
||||
# Load dataset
|
||||
dataset = load_dataset("yelp_review_full")
|
||||
train_dataset = dataset["train"]
|
||||
eval_dataset = dataset["test"]
|
||||
|
||||
# Tokenize
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
||||
|
||||
def tokenize_function(examples):
|
||||
return tokenizer(
|
||||
examples["text"],
|
||||
padding="max_length",
|
||||
truncation=True,
|
||||
max_length=512
|
||||
)
|
||||
|
||||
train_dataset = train_dataset.map(tokenize_function, batched=True)
|
||||
eval_dataset = eval_dataset.map(tokenize_function, batched=True)
|
||||
```
|
||||
|
||||
### Step 2: Load Model
|
||||
|
||||
```python
|
||||
from transformers import AutoModelForSequenceClassification
|
||||
|
||||
model = AutoModelForSequenceClassification.from_pretrained(
|
||||
"bert-base-uncased",
|
||||
num_labels=5 # Number of classes
|
||||
)
|
||||
```
|
||||
|
||||
### Step 3: Define Metrics
|
||||
|
||||
```python
|
||||
import evaluate
|
||||
import numpy as np
|
||||
|
||||
metric = evaluate.load("accuracy")
|
||||
|
||||
def compute_metrics(eval_pred):
|
||||
logits, labels = eval_pred
|
||||
predictions = np.argmax(logits, axis=-1)
|
||||
return metric.compute(predictions=predictions, references=labels)
|
||||
```
|
||||
|
||||
### Step 4: Configure Training
|
||||
|
||||
```python
|
||||
from transformers import TrainingArguments
|
||||
|
||||
training_args = TrainingArguments(
|
||||
output_dir="./results",
|
||||
eval_strategy="epoch",
|
||||
save_strategy="epoch",
|
||||
learning_rate=2e-5,
|
||||
per_device_train_batch_size=8,
|
||||
per_device_eval_batch_size=8,
|
||||
num_train_epochs=3,
|
||||
weight_decay=0.01,
|
||||
logging_dir="./logs",
|
||||
logging_steps=10,
|
||||
load_best_model_at_end=True,
|
||||
metric_for_best_model="accuracy",
|
||||
)
|
||||
```
|
||||
|
||||
### Step 5: Create Trainer and Train
|
||||
|
||||
```python
|
||||
from transformers import Trainer
|
||||
|
||||
trainer = Trainer(
|
||||
model=model,
|
||||
args=training_args,
|
||||
train_dataset=train_dataset,
|
||||
eval_dataset=eval_dataset,
|
||||
compute_metrics=compute_metrics,
|
||||
)
|
||||
|
||||
# Start training
|
||||
trainer.train()
|
||||
|
||||
# Evaluate
|
||||
results = trainer.evaluate()
|
||||
print(results)
|
||||
```
|
||||
|
||||
### Step 6: Save Model
|
||||
|
||||
```python
|
||||
trainer.save_model("./fine_tuned_model")
|
||||
tokenizer.save_pretrained("./fine_tuned_model")
|
||||
|
||||
# Or push to Hub
|
||||
trainer.push_to_hub("username/my-finetuned-model")
|
||||
```
|
||||
|
||||
## TrainingArguments Parameters
|
||||
|
||||
### Essential Parameters
|
||||
|
||||
**output_dir**: Directory for checkpoints and logs
|
||||
```python
|
||||
output_dir="./results"
|
||||
```
|
||||
|
||||
**num_train_epochs**: Number of training epochs
|
||||
```python
|
||||
num_train_epochs=3
|
||||
```
|
||||
|
||||
**per_device_train_batch_size**: Batch size per GPU/CPU
|
||||
```python
|
||||
per_device_train_batch_size=8
|
||||
```
|
||||
|
||||
**learning_rate**: Optimizer learning rate
|
||||
```python
|
||||
learning_rate=2e-5 # Common for BERT-style models
|
||||
learning_rate=5e-5 # Common for smaller models
|
||||
```
|
||||
|
||||
**weight_decay**: L2 regularization
|
||||
```python
|
||||
weight_decay=0.01
|
||||
```
|
||||
|
||||
### Evaluation and Saving
|
||||
|
||||
**eval_strategy**: When to evaluate ("no", "steps", "epoch")
|
||||
```python
|
||||
eval_strategy="epoch" # Evaluate after each epoch
|
||||
eval_strategy="steps" # Evaluate every eval_steps
|
||||
```
|
||||
|
||||
**save_strategy**: When to save checkpoints
|
||||
```python
|
||||
save_strategy="epoch"
|
||||
save_strategy="steps"
|
||||
save_steps=500
|
||||
```
|
||||
|
||||
**load_best_model_at_end**: Load best checkpoint after training
|
||||
```python
|
||||
load_best_model_at_end=True
|
||||
metric_for_best_model="accuracy" # Metric to compare
|
||||
```
|
||||
|
||||
### Optimization
|
||||
|
||||
**gradient_accumulation_steps**: Accumulate gradients over multiple steps
|
||||
```python
|
||||
gradient_accumulation_steps=4 # Effective batch size = batch_size * 4
|
||||
```
|
||||
|
||||
**fp16**: Enable mixed precision (NVIDIA GPUs)
|
||||
```python
|
||||
fp16=True
|
||||
```
|
||||
|
||||
**bf16**: Enable bfloat16 (newer GPUs)
|
||||
```python
|
||||
bf16=True
|
||||
```
|
||||
|
||||
**gradient_checkpointing**: Trade compute for memory
|
||||
```python
|
||||
gradient_checkpointing=True # Slower but uses less memory
|
||||
```
|
||||
|
||||
**optim**: Optimizer choice
|
||||
```python
|
||||
optim="adamw_torch" # Default
|
||||
optim="adamw_8bit" # 8-bit Adam (requires bitsandbytes)
|
||||
optim="adafactor" # Memory-efficient alternative
|
||||
```
|
||||
|
||||
### Learning Rate Scheduling
|
||||
|
||||
**lr_scheduler_type**: Learning rate schedule
|
||||
```python
|
||||
lr_scheduler_type="linear" # Linear decay
|
||||
lr_scheduler_type="cosine" # Cosine annealing
|
||||
lr_scheduler_type="constant" # No decay
|
||||
lr_scheduler_type="constant_with_warmup"
|
||||
```
|
||||
|
||||
**warmup_steps** or **warmup_ratio**: Warmup period
|
||||
```python
|
||||
warmup_steps=500
|
||||
# Or
|
||||
warmup_ratio=0.1 # 10% of total steps
|
||||
```
|
||||
|
||||
### Logging
|
||||
|
||||
**logging_dir**: TensorBoard logs directory
|
||||
```python
|
||||
logging_dir="./logs"
|
||||
```
|
||||
|
||||
**logging_steps**: Log every N steps
|
||||
```python
|
||||
logging_steps=10
|
||||
```
|
||||
|
||||
**report_to**: Logging integrations
|
||||
```python
|
||||
report_to=["tensorboard"]
|
||||
report_to=["wandb"]
|
||||
report_to=["tensorboard", "wandb"]
|
||||
```
|
||||
|
||||
### Distributed Training
|
||||
|
||||
**ddp_backend**: Distributed backend
|
||||
```python
|
||||
ddp_backend="nccl" # For multi-GPU
|
||||
```
|
||||
|
||||
**deepspeed**: DeepSpeed config file
|
||||
```python
|
||||
deepspeed="ds_config.json"
|
||||
```
|
||||
|
||||
## Data Collators
|
||||
|
||||
Handle dynamic padding and special preprocessing:
|
||||
|
||||
### DataCollatorWithPadding
|
||||
|
||||
Pad sequences to longest in batch:
|
||||
```python
|
||||
from transformers import DataCollatorWithPadding
|
||||
|
||||
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
||||
|
||||
trainer = Trainer(
|
||||
model=model,
|
||||
args=training_args,
|
||||
train_dataset=train_dataset,
|
||||
data_collator=data_collator,
|
||||
)
|
||||
```
|
||||
|
||||
### DataCollatorForLanguageModeling
|
||||
|
||||
For masked language modeling:
|
||||
```python
|
||||
from transformers import DataCollatorForLanguageModeling
|
||||
|
||||
data_collator = DataCollatorForLanguageModeling(
|
||||
tokenizer=tokenizer,
|
||||
mlm=True,
|
||||
mlm_probability=0.15
|
||||
)
|
||||
```
|
||||
|
||||
### DataCollatorForSeq2Seq
|
||||
|
||||
For sequence-to-sequence tasks:
|
||||
```python
|
||||
from transformers import DataCollatorForSeq2Seq
|
||||
|
||||
data_collator = DataCollatorForSeq2Seq(
|
||||
tokenizer=tokenizer,
|
||||
model=model,
|
||||
padding=True
|
||||
)
|
||||
```
|
||||
|
||||
## Custom Training
|
||||
|
||||
### Custom Trainer
|
||||
|
||||
Override methods for custom behavior:
|
||||
|
||||
```python
|
||||
from transformers import Trainer
|
||||
|
||||
class CustomTrainer(Trainer):
|
||||
def compute_loss(self, model, inputs, return_outputs=False):
|
||||
labels = inputs.pop("labels")
|
||||
outputs = model(**inputs)
|
||||
logits = outputs.logits
|
||||
|
||||
# Custom loss computation
|
||||
loss_fct = torch.nn.CrossEntropyLoss(weight=class_weights)
|
||||
loss = loss_fct(logits.view(-1, self.model.config.num_labels), labels.view(-1))
|
||||
|
||||
return (loss, outputs) if return_outputs else loss
|
||||
```
|
||||
|
||||
### Custom Callbacks
|
||||
|
||||
Monitor and control training:
|
||||
|
||||
```python
|
||||
from transformers import TrainerCallback
|
||||
|
||||
class CustomCallback(TrainerCallback):
|
||||
def on_epoch_end(self, args, state, control, **kwargs):
|
||||
print(f"Epoch {state.epoch} completed")
|
||||
# Custom logic here
|
||||
return control
|
||||
|
||||
trainer = Trainer(
|
||||
model=model,
|
||||
args=training_args,
|
||||
train_dataset=train_dataset,
|
||||
callbacks=[CustomCallback],
|
||||
)
|
||||
```
|
||||
|
||||
## Advanced Training Techniques
|
||||
|
||||
### Parameter-Efficient Fine-Tuning (PEFT)
|
||||
|
||||
Use LoRA for efficient fine-tuning:
|
||||
|
||||
```python
|
||||
from peft import LoraConfig, get_peft_model
|
||||
|
||||
lora_config = LoraConfig(
|
||||
r=16,
|
||||
lora_alpha=32,
|
||||
target_modules=["query", "value"],
|
||||
lora_dropout=0.05,
|
||||
bias="none",
|
||||
task_type="SEQ_CLS"
|
||||
)
|
||||
|
||||
model = get_peft_model(model, lora_config)
|
||||
model.print_trainable_parameters() # Shows reduced parameter count
|
||||
|
||||
# Train normally with Trainer
|
||||
trainer = Trainer(model=model, args=training_args, ...)
|
||||
trainer.train()
|
||||
```
|
||||
|
||||
### Gradient Checkpointing
|
||||
|
||||
Reduce memory at cost of speed:
|
||||
|
||||
```python
|
||||
model.gradient_checkpointing_enable()
|
||||
|
||||
training_args = TrainingArguments(
|
||||
gradient_checkpointing=True,
|
||||
...
|
||||
)
|
||||
```
|
||||
|
||||
### Mixed Precision Training
|
||||
|
||||
```python
|
||||
training_args = TrainingArguments(
|
||||
fp16=True, # For NVIDIA GPUs with Tensor Cores
|
||||
# or
|
||||
bf16=True, # For newer GPUs (A100, H100)
|
||||
...
|
||||
)
|
||||
```
|
||||
|
||||
### DeepSpeed Integration
|
||||
|
||||
For very large models:
|
||||
|
||||
```python
|
||||
# ds_config.json
|
||||
{
|
||||
"train_batch_size": 16,
|
||||
"gradient_accumulation_steps": 1,
|
||||
"optimizer": {
|
||||
"type": "AdamW",
|
||||
"params": {
|
||||
"lr": 2e-5
|
||||
}
|
||||
},
|
||||
"fp16": {
|
||||
"enabled": true
|
||||
},
|
||||
"zero_optimization": {
|
||||
"stage": 2
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
```python
|
||||
training_args = TrainingArguments(
|
||||
deepspeed="ds_config.json",
|
||||
...
|
||||
)
|
||||
```
|
||||
|
||||
## Training Tips
|
||||
|
||||
### Hyperparameter Tuning
|
||||
|
||||
Common starting points:
|
||||
- **Learning rate**: 2e-5 to 5e-5 for BERT-like models, 1e-4 to 1e-3 for smaller models
|
||||
- **Batch size**: 8-32 depending on GPU memory
|
||||
- **Epochs**: 2-4 for fine-tuning, more for domain adaptation
|
||||
- **Warmup**: 10% of total steps
|
||||
|
||||
Use Optuna for hyperparameter search:
|
||||
|
||||
```python
|
||||
def model_init():
|
||||
return AutoModelForSequenceClassification.from_pretrained(
|
||||
"bert-base-uncased",
|
||||
num_labels=5
|
||||
)
|
||||
|
||||
def optuna_hp_space(trial):
|
||||
return {
|
||||
"learning_rate": trial.suggest_float("learning_rate", 1e-5, 5e-5, log=True),
|
||||
"per_device_train_batch_size": trial.suggest_categorical("per_device_train_batch_size", [8, 16, 32]),
|
||||
"num_train_epochs": trial.suggest_int("num_train_epochs", 2, 5),
|
||||
}
|
||||
|
||||
trainer = Trainer(model_init=model_init, args=training_args, ...)
|
||||
best_trial = trainer.hyperparameter_search(
|
||||
direction="maximize",
|
||||
backend="optuna",
|
||||
hp_space=optuna_hp_space,
|
||||
n_trials=10,
|
||||
)
|
||||
```
|
||||
|
||||
### Monitoring Training
|
||||
|
||||
Use TensorBoard:
|
||||
```bash
|
||||
tensorboard --logdir ./logs
|
||||
```
|
||||
|
||||
Or Weights & Biases:
|
||||
```python
|
||||
import wandb
|
||||
wandb.init(project="my-project")
|
||||
|
||||
training_args = TrainingArguments(
|
||||
report_to=["wandb"],
|
||||
...
|
||||
)
|
||||
```
|
||||
|
||||
### Resume Training
|
||||
|
||||
Resume from checkpoint:
|
||||
```python
|
||||
trainer.train(resume_from_checkpoint="./results/checkpoint-1000")
|
||||
```
|
||||
|
||||
## Common Issues
|
||||
|
||||
**CUDA out of memory:**
|
||||
- Reduce batch size
|
||||
- Enable gradient checkpointing
|
||||
- Use gradient accumulation
|
||||
- Use 8-bit optimizers
|
||||
|
||||
**Overfitting:**
|
||||
- Increase weight_decay
|
||||
- Add dropout
|
||||
- Use early stopping
|
||||
- Reduce model size or training epochs
|
||||
|
||||
**Slow training:**
|
||||
- Increase batch size
|
||||
- Enable mixed precision (fp16/bf16)
|
||||
- Use multiple GPUs
|
||||
- Optimize data loading
|
||||
|
||||
## Best Practices
|
||||
|
||||
1. **Start small**: Test on small dataset subset first
|
||||
2. **Use evaluation**: Monitor validation metrics
|
||||
3. **Save checkpoints**: Enable save_strategy
|
||||
4. **Log extensively**: Use TensorBoard or W&B
|
||||
5. **Try different learning rates**: Start with 2e-5
|
||||
6. **Use warmup**: Helps training stability
|
||||
7. **Enable mixed precision**: Faster training
|
||||
8. **Consider PEFT**: For large models with limited resources
|
||||
Reference in New Issue
Block a user