Initial commit
This commit is contained in:
335
skills/transformers/references/pipelines.md
Normal file
335
skills/transformers/references/pipelines.md
Normal file
@@ -0,0 +1,335 @@
|
||||
# Pipeline API Reference
|
||||
|
||||
## Overview
|
||||
|
||||
Pipelines provide the simplest way to use pre-trained models for inference. They abstract away tokenization, model loading, and post-processing, offering a unified interface for dozens of tasks.
|
||||
|
||||
## Basic Usage
|
||||
|
||||
Create a pipeline by specifying a task:
|
||||
|
||||
```python
|
||||
from transformers import pipeline
|
||||
|
||||
# Auto-select default model for task
|
||||
pipe = pipeline("text-classification")
|
||||
result = pipe("This is great!")
|
||||
```
|
||||
|
||||
Or specify a model:
|
||||
|
||||
```python
|
||||
pipe = pipeline("text-classification", model="distilbert-base-uncased-finetuned-sst-2-english")
|
||||
```
|
||||
|
||||
## Supported Tasks
|
||||
|
||||
### Natural Language Processing
|
||||
|
||||
**text-generation**: Generate text continuations
|
||||
```python
|
||||
generator = pipeline("text-generation", model="gpt2")
|
||||
output = generator("Once upon a time", max_length=50, num_return_sequences=2)
|
||||
```
|
||||
|
||||
**text-classification**: Classify text into categories
|
||||
```python
|
||||
classifier = pipeline("text-classification")
|
||||
result = classifier("I love this product!") # Returns label and score
|
||||
```
|
||||
|
||||
**token-classification**: Label individual tokens (NER, POS tagging)
|
||||
```python
|
||||
ner = pipeline("token-classification", model="dslim/bert-base-NER")
|
||||
entities = ner("Hugging Face is based in New York City")
|
||||
```
|
||||
|
||||
**question-answering**: Extract answers from context
|
||||
```python
|
||||
qa = pipeline("question-answering")
|
||||
result = qa(question="What is the capital?", context="Paris is the capital of France.")
|
||||
```
|
||||
|
||||
**fill-mask**: Predict masked tokens
|
||||
```python
|
||||
unmasker = pipeline("fill-mask", model="bert-base-uncased")
|
||||
result = unmasker("Paris is the [MASK] of France")
|
||||
```
|
||||
|
||||
**summarization**: Summarize long texts
|
||||
```python
|
||||
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
||||
summary = summarizer("Long article text...", max_length=130, min_length=30)
|
||||
```
|
||||
|
||||
**translation**: Translate between languages
|
||||
```python
|
||||
translator = pipeline("translation_en_to_fr", model="Helsinki-NLP/opus-mt-en-fr")
|
||||
result = translator("Hello, how are you?")
|
||||
```
|
||||
|
||||
**zero-shot-classification**: Classify without training data
|
||||
```python
|
||||
classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
|
||||
result = classifier(
|
||||
"This is a course about Python programming",
|
||||
candidate_labels=["education", "politics", "business"]
|
||||
)
|
||||
```
|
||||
|
||||
**sentiment-analysis**: Alias for text-classification focused on sentiment
|
||||
```python
|
||||
sentiment = pipeline("sentiment-analysis")
|
||||
result = sentiment("This product exceeded my expectations!")
|
||||
```
|
||||
|
||||
### Computer Vision
|
||||
|
||||
**image-classification**: Classify images
|
||||
```python
|
||||
classifier = pipeline("image-classification", model="google/vit-base-patch16-224")
|
||||
result = classifier("path/to/image.jpg")
|
||||
# Or use PIL Image or URL
|
||||
from PIL import Image
|
||||
result = classifier(Image.open("image.jpg"))
|
||||
```
|
||||
|
||||
**object-detection**: Detect objects in images
|
||||
```python
|
||||
detector = pipeline("object-detection", model="facebook/detr-resnet-50")
|
||||
results = detector("image.jpg") # Returns bounding boxes and labels
|
||||
```
|
||||
|
||||
**image-segmentation**: Segment images
|
||||
```python
|
||||
segmenter = pipeline("image-segmentation", model="facebook/detr-resnet-50-panoptic")
|
||||
segments = segmenter("image.jpg")
|
||||
```
|
||||
|
||||
**depth-estimation**: Estimate depth from images
|
||||
```python
|
||||
depth = pipeline("depth-estimation", model="Intel/dpt-large")
|
||||
result = depth("image.jpg")
|
||||
```
|
||||
|
||||
**zero-shot-image-classification**: Classify images without training
|
||||
```python
|
||||
classifier = pipeline("zero-shot-image-classification", model="openai/clip-vit-base-patch32")
|
||||
result = classifier("image.jpg", candidate_labels=["cat", "dog", "bird"])
|
||||
```
|
||||
|
||||
### Audio
|
||||
|
||||
**automatic-speech-recognition**: Transcribe speech
|
||||
```python
|
||||
asr = pipeline("automatic-speech-recognition", model="openai/whisper-base")
|
||||
text = asr("audio.mp3")
|
||||
```
|
||||
|
||||
**audio-classification**: Classify audio
|
||||
```python
|
||||
classifier = pipeline("audio-classification", model="MIT/ast-finetuned-audioset-10-10-0.4593")
|
||||
result = classifier("audio.wav")
|
||||
```
|
||||
|
||||
**text-to-speech**: Generate speech from text (with specific models)
|
||||
```python
|
||||
tts = pipeline("text-to-speech", model="microsoft/speecht5_tts")
|
||||
audio = tts("Hello, this is a test")
|
||||
```
|
||||
|
||||
### Multimodal
|
||||
|
||||
**visual-question-answering**: Answer questions about images
|
||||
```python
|
||||
vqa = pipeline("visual-question-answering", model="dandelin/vilt-b32-finetuned-vqa")
|
||||
result = vqa(image="image.jpg", question="What color is the car?")
|
||||
```
|
||||
|
||||
**document-question-answering**: Answer questions about documents
|
||||
```python
|
||||
doc_qa = pipeline("document-question-answering", model="impira/layoutlm-document-qa")
|
||||
result = doc_qa(image="document.png", question="What is the invoice number?")
|
||||
```
|
||||
|
||||
**image-to-text**: Generate captions for images
|
||||
```python
|
||||
captioner = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
|
||||
caption = captioner("image.jpg")
|
||||
```
|
||||
|
||||
## Pipeline Parameters
|
||||
|
||||
### Common Parameters
|
||||
|
||||
**model**: Model identifier or path
|
||||
```python
|
||||
pipe = pipeline("task", model="model-id")
|
||||
```
|
||||
|
||||
**device**: GPU device index (-1 for CPU, 0+ for GPU)
|
||||
```python
|
||||
pipe = pipeline("task", device=0) # Use first GPU
|
||||
```
|
||||
|
||||
**device_map**: Automatic device allocation for large models
|
||||
```python
|
||||
pipe = pipeline("task", model="large-model", device_map="auto")
|
||||
```
|
||||
|
||||
**dtype**: Model precision (reduces memory)
|
||||
```python
|
||||
import torch
|
||||
pipe = pipeline("task", torch_dtype=torch.float16)
|
||||
```
|
||||
|
||||
**batch_size**: Process multiple inputs at once
|
||||
```python
|
||||
pipe = pipeline("task", batch_size=8)
|
||||
results = pipe(["text1", "text2", "text3"])
|
||||
```
|
||||
|
||||
**framework**: Choose PyTorch or TensorFlow
|
||||
```python
|
||||
pipe = pipeline("task", framework="pt") # or "tf"
|
||||
```
|
||||
|
||||
## Batch Processing
|
||||
|
||||
Process multiple inputs efficiently:
|
||||
|
||||
```python
|
||||
classifier = pipeline("text-classification")
|
||||
texts = ["Great product!", "Terrible experience", "Just okay"]
|
||||
results = classifier(texts)
|
||||
```
|
||||
|
||||
For large datasets, use generators or KeyDataset:
|
||||
|
||||
```python
|
||||
from transformers.pipelines.pt_utils import KeyDataset
|
||||
import datasets
|
||||
|
||||
dataset = datasets.load_dataset("dataset-name", split="test")
|
||||
pipe = pipeline("task", device=0)
|
||||
|
||||
for output in pipe(KeyDataset(dataset, "text")):
|
||||
print(output)
|
||||
```
|
||||
|
||||
## Performance Optimization
|
||||
|
||||
### GPU Acceleration
|
||||
|
||||
Always specify device for GPU usage:
|
||||
```python
|
||||
pipe = pipeline("task", device=0)
|
||||
```
|
||||
|
||||
### Mixed Precision
|
||||
|
||||
Use float16 for 2x speedup on supported GPUs:
|
||||
```python
|
||||
import torch
|
||||
pipe = pipeline("task", torch_dtype=torch.float16, device=0)
|
||||
```
|
||||
|
||||
### Batching Guidelines
|
||||
|
||||
- **CPU**: Usually skip batching
|
||||
- **GPU with variable lengths**: May reduce efficiency
|
||||
- **GPU with similar lengths**: Significant speedup
|
||||
- **Real-time applications**: Skip batching (increases latency)
|
||||
|
||||
```python
|
||||
# Good for throughput
|
||||
pipe = pipeline("task", batch_size=32, device=0)
|
||||
results = pipe(list_of_texts)
|
||||
```
|
||||
|
||||
### Streaming Output
|
||||
|
||||
For text generation, stream tokens as they're generated:
|
||||
|
||||
```python
|
||||
from transformers import TextStreamer
|
||||
|
||||
generator = pipeline("text-generation", model="gpt2", streamer=TextStreamer())
|
||||
generator("The future of AI", max_length=100)
|
||||
```
|
||||
|
||||
## Custom Pipeline Configuration
|
||||
|
||||
Specify tokenizer and model separately:
|
||||
|
||||
```python
|
||||
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("model-id")
|
||||
model = AutoModelForSequenceClassification.from_pretrained("model-id")
|
||||
pipe = pipeline("text-classification", model=model, tokenizer=tokenizer)
|
||||
```
|
||||
|
||||
Use custom pipeline classes:
|
||||
|
||||
```python
|
||||
from transformers import TextClassificationPipeline
|
||||
|
||||
class CustomPipeline(TextClassificationPipeline):
|
||||
def postprocess(self, model_outputs, **kwargs):
|
||||
# Custom post-processing
|
||||
return super().postprocess(model_outputs, **kwargs)
|
||||
|
||||
pipe = pipeline("text-classification", model="model-id", pipeline_class=CustomPipeline)
|
||||
```
|
||||
|
||||
## Input Formats
|
||||
|
||||
Pipelines accept various input types:
|
||||
|
||||
**Text tasks**: Strings or lists of strings
|
||||
```python
|
||||
pipe("single text")
|
||||
pipe(["text1", "text2"])
|
||||
```
|
||||
|
||||
**Image tasks**: URLs, file paths, PIL Images, or numpy arrays
|
||||
```python
|
||||
pipe("https://example.com/image.jpg")
|
||||
pipe("local/path/image.png")
|
||||
pipe(PIL.Image.open("image.jpg"))
|
||||
pipe(numpy_array)
|
||||
```
|
||||
|
||||
**Audio tasks**: File paths, numpy arrays, or raw waveforms
|
||||
```python
|
||||
pipe("audio.mp3")
|
||||
pipe(audio_array)
|
||||
```
|
||||
|
||||
## Error Handling
|
||||
|
||||
Handle common issues:
|
||||
|
||||
```python
|
||||
try:
|
||||
result = pipe(input_data)
|
||||
except Exception as e:
|
||||
if "CUDA out of memory" in str(e):
|
||||
# Reduce batch size or use CPU
|
||||
pipe = pipeline("task", device=-1)
|
||||
elif "does not appear to have a file named" in str(e):
|
||||
# Model not found
|
||||
print("Check model identifier")
|
||||
else:
|
||||
raise
|
||||
```
|
||||
|
||||
## Best Practices
|
||||
|
||||
1. **Use pipelines for prototyping**: Fast iteration without boilerplate
|
||||
2. **Specify models explicitly**: Default models may change
|
||||
3. **Enable GPU when available**: Significant speedup
|
||||
4. **Use batching for throughput**: When processing many inputs
|
||||
5. **Consider memory usage**: Use float16 or smaller models for large batches
|
||||
6. **Cache models locally**: Avoid repeated downloads
|
||||
Reference in New Issue
Block a user