Initial commit

This commit is contained in:
Zhongwei Li
2025-11-30 08:30:10 +08:00
commit f0bd18fb4e
824 changed files with 331919 additions and 0 deletions

View File

@@ -0,0 +1,309 @@
#!/usr/bin/env python3
"""
Benchmark GNN models on standard datasets.
This script provides a simple way to benchmark different GNN architectures
on common datasets and compare their performance.
Usage:
python benchmark_model.py --models gcn gat --dataset Cora
python benchmark_model.py --models gcn --dataset Cora --epochs 200 --runs 10
"""
import argparse
import torch
import torch.nn.functional as F
from torch_geometric.nn import GCNConv, GATConv, SAGEConv, GINConv
from torch_geometric.datasets import Planetoid, TUDataset
from torch_geometric.loader import DataLoader
from torch_geometric.nn import global_mean_pool
import time
import numpy as np
class GCN(torch.nn.Module):
def __init__(self, num_features, hidden_channels, num_classes, dropout=0.5):
super().__init__()
self.conv1 = GCNConv(num_features, hidden_channels)
self.conv2 = GCNConv(hidden_channels, num_classes)
self.dropout = dropout
def forward(self, x, edge_index, batch=None):
x = self.conv1(x, edge_index)
x = F.relu(x)
x = F.dropout(x, p=self.dropout, training=self.training)
x = self.conv2(x, edge_index)
if batch is not None:
x = global_mean_pool(x, batch)
return F.log_softmax(x, dim=1)
class GAT(torch.nn.Module):
def __init__(self, num_features, hidden_channels, num_classes, heads=8, dropout=0.6):
super().__init__()
self.conv1 = GATConv(num_features, hidden_channels, heads=heads, dropout=dropout)
self.conv2 = GATConv(hidden_channels * heads, num_classes, heads=1,
concat=False, dropout=dropout)
self.dropout = dropout
def forward(self, x, edge_index, batch=None):
x = F.dropout(x, p=self.dropout, training=self.training)
x = F.elu(self.conv1(x, edge_index))
x = F.dropout(x, p=self.dropout, training=self.training)
x = self.conv2(x, edge_index)
if batch is not None:
x = global_mean_pool(x, batch)
return F.log_softmax(x, dim=1)
class GraphSAGE(torch.nn.Module):
def __init__(self, num_features, hidden_channels, num_classes, dropout=0.5):
super().__init__()
self.conv1 = SAGEConv(num_features, hidden_channels)
self.conv2 = SAGEConv(hidden_channels, num_classes)
self.dropout = dropout
def forward(self, x, edge_index, batch=None):
x = self.conv1(x, edge_index)
x = F.relu(x)
x = F.dropout(x, p=self.dropout, training=self.training)
x = self.conv2(x, edge_index)
if batch is not None:
x = global_mean_pool(x, batch)
return F.log_softmax(x, dim=1)
MODELS = {
'gcn': GCN,
'gat': GAT,
'graphsage': GraphSAGE,
}
def train_node_classification(model, data, optimizer):
"""Train for node classification."""
model.train()
optimizer.zero_grad()
out = model(data.x, data.edge_index)
loss = F.nll_loss(out[data.train_mask], data.y[data.train_mask])
loss.backward()
optimizer.step()
return loss.item()
@torch.no_grad()
def test_node_classification(model, data):
"""Test for node classification."""
model.eval()
out = model(data.x, data.edge_index)
pred = out.argmax(dim=1)
accs = []
for mask in [data.train_mask, data.val_mask, data.test_mask]:
correct = (pred[mask] == data.y[mask]).sum()
accs.append(float(correct) / int(mask.sum()))
return accs
def train_graph_classification(model, loader, optimizer, device):
"""Train for graph classification."""
model.train()
total_loss = 0
for data in loader:
data = data.to(device)
optimizer.zero_grad()
out = model(data.x, data.edge_index, data.batch)
loss = F.nll_loss(out, data.y)
loss.backward()
optimizer.step()
total_loss += loss.item() * data.num_graphs
return total_loss / len(loader.dataset)
@torch.no_grad()
def test_graph_classification(model, loader, device):
"""Test for graph classification."""
model.eval()
correct = 0
for data in loader:
data = data.to(device)
out = model(data.x, data.edge_index, data.batch)
pred = out.argmax(dim=1)
correct += (pred == data.y).sum().item()
return correct / len(loader.dataset)
def benchmark_node_classification(model_name, dataset_name, epochs, lr, weight_decay, device):
"""Benchmark a model on node classification."""
# Load dataset
dataset = Planetoid(root=f'/tmp/{dataset_name}', name=dataset_name)
data = dataset[0].to(device)
# Create model
model_class = MODELS[model_name]
model = model_class(
num_features=dataset.num_features,
hidden_channels=64,
num_classes=dataset.num_classes
).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=lr, weight_decay=weight_decay)
# Training
start_time = time.time()
best_val_acc = 0
best_test_acc = 0
for epoch in range(1, epochs + 1):
loss = train_node_classification(model, data, optimizer)
train_acc, val_acc, test_acc = test_node_classification(model, data)
if val_acc > best_val_acc:
best_val_acc = val_acc
best_test_acc = test_acc
train_time = time.time() - start_time
return {
'train_acc': train_acc,
'val_acc': best_val_acc,
'test_acc': best_test_acc,
'train_time': train_time,
}
def benchmark_graph_classification(model_name, dataset_name, epochs, lr, device):
"""Benchmark a model on graph classification."""
# Load dataset
dataset = TUDataset(root=f'/tmp/{dataset_name}', name=dataset_name)
# Split dataset
dataset = dataset.shuffle()
train_dataset = dataset[:int(len(dataset) * 0.8)]
test_dataset = dataset[int(len(dataset) * 0.8):]
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=32)
# Create model
model_class = MODELS[model_name]
model = model_class(
num_features=dataset.num_features,
hidden_channels=64,
num_classes=dataset.num_classes
).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
# Training
start_time = time.time()
for epoch in range(1, epochs + 1):
loss = train_graph_classification(model, train_loader, optimizer, device)
# Final evaluation
train_acc = test_graph_classification(model, train_loader, device)
test_acc = test_graph_classification(model, test_loader, device)
train_time = time.time() - start_time
return {
'train_acc': train_acc,
'test_acc': test_acc,
'train_time': train_time,
}
def run_benchmark(args):
"""Run benchmark experiments."""
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Using device: {device}")
# Determine task type
if args.dataset in ['Cora', 'CiteSeer', 'PubMed']:
task = 'node_classification'
else:
task = 'graph_classification'
print(f"\\nDataset: {args.dataset}")
print(f"Task: {task}")
print(f"Models: {', '.join(args.models)}")
print(f"Epochs: {args.epochs}")
print(f"Runs: {args.runs}")
print("=" * 60)
results = {model: [] for model in args.models}
# Run experiments
for run in range(args.runs):
print(f"\\nRun {run + 1}/{args.runs}")
print("-" * 60)
for model_name in args.models:
if model_name not in MODELS:
print(f"Unknown model: {model_name}")
continue
print(f" Training {model_name.upper()}...", end=" ")
try:
if task == 'node_classification':
result = benchmark_node_classification(
model_name, args.dataset, args.epochs,
args.lr, args.weight_decay, device
)
print(f"Test Acc: {result['test_acc']:.4f}, "
f"Time: {result['train_time']:.2f}s")
else:
result = benchmark_graph_classification(
model_name, args.dataset, args.epochs, args.lr, device
)
print(f"Test Acc: {result['test_acc']:.4f}, "
f"Time: {result['train_time']:.2f}s")
results[model_name].append(result)
except Exception as e:
print(f"Error: {e}")
# Print summary
print("\\n" + "=" * 60)
print("BENCHMARK RESULTS")
print("=" * 60)
for model_name in args.models:
if not results[model_name]:
continue
test_accs = [r['test_acc'] for r in results[model_name]]
times = [r['train_time'] for r in results[model_name]]
print(f"\\n{model_name.upper()}")
print(f" Test Accuracy: {np.mean(test_accs):.4f} ± {np.std(test_accs):.4f}")
print(f" Training Time: {np.mean(times):.2f} ± {np.std(times):.2f}s")
def main():
parser = argparse.ArgumentParser(description="Benchmark GNN models")
parser.add_argument('--models', nargs='+', default=['gcn'],
help='Model types to benchmark (gcn, gat, graphsage)')
parser.add_argument('--dataset', type=str, default='Cora',
help='Dataset name (Cora, CiteSeer, PubMed, ENZYMES, PROTEINS)')
parser.add_argument('--epochs', type=int, default=200,
help='Number of training epochs')
parser.add_argument('--runs', type=int, default=5,
help='Number of runs to average over')
parser.add_argument('--lr', type=float, default=0.01,
help='Learning rate')
parser.add_argument('--weight-decay', type=float, default=5e-4,
help='Weight decay for node classification')
args = parser.parse_args()
run_benchmark(args)
if __name__ == '__main__':
main()

View File

@@ -0,0 +1,529 @@
#!/usr/bin/env python3
"""
Generate boilerplate code for common GNN architectures in PyTorch Geometric.
This script creates ready-to-use GNN model templates with training loops,
evaluation metrics, and proper data handling.
Usage:
python create_gnn_template.py --model gcn --task node_classification --output my_model.py
python create_gnn_template.py --model gat --task graph_classification --output graph_classifier.py
"""
import argparse
from pathlib import Path
TEMPLATES = {
'node_classification': {
'gcn': '''import torch
import torch.nn.functional as F
from torch_geometric.nn import GCNConv
from torch_geometric.datasets import Planetoid
class GCN(torch.nn.Module):
"""Graph Convolutional Network for node classification."""
def __init__(self, num_features, hidden_channels, num_classes, num_layers=2, dropout=0.5):
super().__init__()
self.convs = torch.nn.ModuleList()
# First layer
self.convs.append(GCNConv(num_features, hidden_channels))
# Hidden layers
for _ in range(num_layers - 2):
self.convs.append(GCNConv(hidden_channels, hidden_channels))
# Output layer
self.convs.append(GCNConv(hidden_channels, num_classes))
self.dropout = dropout
def forward(self, data):
x, edge_index = data.x, data.edge_index
# Apply conv layers with ReLU and dropout
for conv in self.convs[:-1]:
x = conv(x, edge_index)
x = F.relu(x)
x = F.dropout(x, p=self.dropout, training=self.training)
# Final layer without activation
x = self.convs[-1](x, edge_index)
return F.log_softmax(x, dim=1)
def train(model, data, optimizer):
"""Train the model for one epoch."""
model.train()
optimizer.zero_grad()
out = model(data)
loss = F.nll_loss(out[data.train_mask], data.y[data.train_mask])
loss.backward()
optimizer.step()
return loss.item()
@torch.no_grad()
def test(model, data):
"""Evaluate the model."""
model.eval()
out = model(data)
pred = out.argmax(dim=1)
accs = []
for mask in [data.train_mask, data.val_mask, data.test_mask]:
correct = (pred[mask] == data.y[mask]).sum()
accs.append(int(correct) / int(mask.sum()))
return accs
def main():
# Load dataset
dataset = Planetoid(root='/tmp/Cora', name='Cora')
data = dataset[0]
# Create model
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = GCN(
num_features=dataset.num_features,
hidden_channels=64,
num_classes=dataset.num_classes,
num_layers=3,
dropout=0.5
).to(device)
data = data.to(device)
# Setup optimizer
optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4)
# Training loop
print("Training GCN model...")
best_val_acc = 0
for epoch in range(1, 201):
loss = train(model, data, optimizer)
train_acc, val_acc, test_acc = test(model, data)
if val_acc > best_val_acc:
best_val_acc = val_acc
best_test_acc = test_acc
if epoch % 10 == 0:
print(f'Epoch {epoch:03d}, Loss: {loss:.4f}, '
f'Train: {train_acc:.4f}, Val: {val_acc:.4f}, Test: {test_acc:.4f}')
print(f'\\nBest Test Accuracy: {best_test_acc:.4f}')
if __name__ == '__main__':
main()
''',
'gat': '''import torch
import torch.nn.functional as F
from torch_geometric.nn import GATConv
from torch_geometric.datasets import Planetoid
class GAT(torch.nn.Module):
"""Graph Attention Network for node classification."""
def __init__(self, num_features, hidden_channels, num_classes, heads=8, dropout=0.6):
super().__init__()
self.conv1 = GATConv(num_features, hidden_channels, heads=heads, dropout=dropout)
self.conv2 = GATConv(hidden_channels * heads, num_classes, heads=1,
concat=False, dropout=dropout)
self.dropout = dropout
def forward(self, data):
x, edge_index = data.x, data.edge_index
x = F.dropout(x, p=self.dropout, training=self.training)
x = F.elu(self.conv1(x, edge_index))
x = F.dropout(x, p=self.dropout, training=self.training)
x = self.conv2(x, edge_index)
return F.log_softmax(x, dim=1)
def train(model, data, optimizer):
"""Train the model for one epoch."""
model.train()
optimizer.zero_grad()
out = model(data)
loss = F.nll_loss(out[data.train_mask], data.y[data.train_mask])
loss.backward()
optimizer.step()
return loss.item()
@torch.no_grad()
def test(model, data):
"""Evaluate the model."""
model.eval()
out = model(data)
pred = out.argmax(dim=1)
accs = []
for mask in [data.train_mask, data.val_mask, data.test_mask]:
correct = (pred[mask] == data.y[mask]).sum()
accs.append(int(correct) / int(mask.sum()))
return accs
def main():
# Load dataset
dataset = Planetoid(root='/tmp/Cora', name='Cora')
data = dataset[0]
# Create model
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = GAT(
num_features=dataset.num_features,
hidden_channels=8,
num_classes=dataset.num_classes,
heads=8,
dropout=0.6
).to(device)
data = data.to(device)
# Setup optimizer
optimizer = torch.optim.Adam(model.parameters(), lr=0.005, weight_decay=5e-4)
# Training loop
print("Training GAT model...")
best_val_acc = 0
for epoch in range(1, 201):
loss = train(model, data, optimizer)
train_acc, val_acc, test_acc = test(model, data)
if val_acc > best_val_acc:
best_val_acc = val_acc
best_test_acc = test_acc
if epoch % 10 == 0:
print(f'Epoch {epoch:03d}, Loss: {loss:.4f}, '
f'Train: {train_acc:.4f}, Val: {val_acc:.4f}, Test: {test_acc:.4f}')
print(f'\\nBest Test Accuracy: {best_test_acc:.4f}')
if __name__ == '__main__':
main()
''',
'graphsage': '''import torch
import torch.nn.functional as F
from torch_geometric.nn import SAGEConv
from torch_geometric.datasets import Planetoid
class GraphSAGE(torch.nn.Module):
"""GraphSAGE for node classification."""
def __init__(self, num_features, hidden_channels, num_classes, num_layers=2, dropout=0.5):
super().__init__()
self.convs = torch.nn.ModuleList()
self.convs.append(SAGEConv(num_features, hidden_channels))
for _ in range(num_layers - 2):
self.convs.append(SAGEConv(hidden_channels, hidden_channels))
self.convs.append(SAGEConv(hidden_channels, num_classes))
self.dropout = dropout
def forward(self, data):
x, edge_index = data.x, data.edge_index
for conv in self.convs[:-1]:
x = conv(x, edge_index)
x = F.relu(x)
x = F.dropout(x, p=self.dropout, training=self.training)
x = self.convs[-1](x, edge_index)
return F.log_softmax(x, dim=1)
def train(model, data, optimizer):
model.train()
optimizer.zero_grad()
out = model(data)
loss = F.nll_loss(out[data.train_mask], data.y[data.train_mask])
loss.backward()
optimizer.step()
return loss.item()
@torch.no_grad()
def test(model, data):
model.eval()
out = model(data)
pred = out.argmax(dim=1)
accs = []
for mask in [data.train_mask, data.val_mask, data.test_mask]:
correct = (pred[mask] == data.y[mask]).sum()
accs.append(int(correct) / int(mask.sum()))
return accs
def main():
dataset = Planetoid(root='/tmp/Cora', name='Cora')
data = dataset[0]
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = GraphSAGE(
num_features=dataset.num_features,
hidden_channels=64,
num_classes=dataset.num_classes,
num_layers=2,
dropout=0.5
).to(device)
data = data.to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4)
print("Training GraphSAGE model...")
best_val_acc = 0
for epoch in range(1, 201):
loss = train(model, data, optimizer)
train_acc, val_acc, test_acc = test(model, data)
if val_acc > best_val_acc:
best_val_acc = val_acc
best_test_acc = test_acc
if epoch % 10 == 0:
print(f'Epoch {epoch:03d}, Loss: {loss:.4f}, '
f'Train: {train_acc:.4f}, Val: {val_acc:.4f}, Test: {test_acc:.4f}')
print(f'\\nBest Test Accuracy: {best_test_acc:.4f}')
if __name__ == '__main__':
main()
''',
},
'graph_classification': {
'gin': '''import torch
import torch.nn.functional as F
from torch_geometric.nn import GINConv, global_add_pool
from torch_geometric.datasets import TUDataset
from torch_geometric.loader import DataLoader
class GIN(torch.nn.Module):
"""Graph Isomorphism Network for graph classification."""
def __init__(self, num_features, hidden_channels, num_classes, num_layers=3, dropout=0.5):
super().__init__()
self.convs = torch.nn.ModuleList()
self.batch_norms = torch.nn.ModuleList()
# Create MLP for first layer
nn = torch.nn.Sequential(
torch.nn.Linear(num_features, hidden_channels),
torch.nn.ReLU(),
torch.nn.Linear(hidden_channels, hidden_channels)
)
self.convs.append(GINConv(nn))
self.batch_norms.append(torch.nn.BatchNorm1d(hidden_channels))
# Hidden layers
for _ in range(num_layers - 2):
nn = torch.nn.Sequential(
torch.nn.Linear(hidden_channels, hidden_channels),
torch.nn.ReLU(),
torch.nn.Linear(hidden_channels, hidden_channels)
)
self.convs.append(GINConv(nn))
self.batch_norms.append(torch.nn.BatchNorm1d(hidden_channels))
# Output MLP
self.lin = torch.nn.Linear(hidden_channels, num_classes)
self.dropout = dropout
def forward(self, data):
x, edge_index, batch = data.x, data.edge_index, data.batch
for conv, batch_norm in zip(self.convs, self.batch_norms):
x = conv(x, edge_index)
x = batch_norm(x)
x = F.relu(x)
x = F.dropout(x, p=self.dropout, training=self.training)
# Global pooling
x = global_add_pool(x, batch)
# Output layer
x = self.lin(x)
return F.log_softmax(x, dim=1)
def train(model, loader, optimizer, device):
"""Train the model for one epoch."""
model.train()
total_loss = 0
for data in loader:
data = data.to(device)
optimizer.zero_grad()
out = model(data)
loss = F.nll_loss(out, data.y)
loss.backward()
optimizer.step()
total_loss += loss.item() * data.num_graphs
return total_loss / len(loader.dataset)
@torch.no_grad()
def test(model, loader, device):
"""Evaluate the model."""
model.eval()
correct = 0
for data in loader:
data = data.to(device)
out = model(data)
pred = out.argmax(dim=1)
correct += (pred == data.y).sum().item()
return correct / len(loader.dataset)
def main():
# Load dataset
dataset = TUDataset(root='/tmp/ENZYMES', name='ENZYMES')
print(f"Dataset: {dataset}")
print(f"Number of graphs: {len(dataset)}")
print(f"Number of features: {dataset.num_features}")
print(f"Number of classes: {dataset.num_classes}")
# Shuffle and split
dataset = dataset.shuffle()
train_dataset = dataset[:int(len(dataset) * 0.8)]
test_dataset = dataset[int(len(dataset) * 0.8):]
# Create data loaders
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=32)
# Create model
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = GIN(
num_features=dataset.num_features,
hidden_channels=64,
num_classes=dataset.num_classes,
num_layers=3,
dropout=0.5
).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
# Training loop
print("\\nTraining GIN model...")
for epoch in range(1, 101):
loss = train(model, train_loader, optimizer, device)
train_acc = test(model, train_loader, device)
test_acc = test(model, test_loader, device)
if epoch % 10 == 0:
print(f'Epoch {epoch:03d}, Loss: {loss:.4f}, '
f'Train Acc: {train_acc:.4f}, Test Acc: {test_acc:.4f}')
if __name__ == '__main__':
main()
''',
},
}
def generate_template(model_type: str, task: str, output_path: str):
"""Generate a GNN template file."""
if task not in TEMPLATES:
raise ValueError(f"Unknown task: {task}. Available: {list(TEMPLATES.keys())}")
if model_type not in TEMPLATES[task]:
raise ValueError(f"Model {model_type} not available for task {task}. "
f"Available: {list(TEMPLATES[task].keys())}")
template = TEMPLATES[task][model_type]
# Write to file
output_file = Path(output_path)
output_file.parent.mkdir(parents=True, exist_ok=True)
with open(output_file, 'w') as f:
f.write(template)
print(f"✓ Generated {model_type.upper()} template for {task}")
print(f" Saved to: {output_path}")
print(f"\\nTo run the template:")
print(f" python {output_path}")
def list_templates():
"""List all available templates."""
print("Available GNN Templates")
print("=" * 50)
for task, models in TEMPLATES.items():
print(f"\\n{task.upper()}")
print("-" * 50)
for model in models.keys():
print(f" - {model}")
print()
def main():
parser = argparse.ArgumentParser(
description="Generate GNN model templates",
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog="""
Examples:
python create_gnn_template.py --model gcn --task node_classification --output gcn_model.py
python create_gnn_template.py --model gin --task graph_classification --output gin_model.py
python create_gnn_template.py --list
"""
)
parser.add_argument('--model', type=str,
help='Model type (gcn, gat, graphsage, gin)')
parser.add_argument('--task', type=str,
help='Task type (node_classification, graph_classification)')
parser.add_argument('--output', type=str, default='gnn_model.py',
help='Output file path (default: gnn_model.py)')
parser.add_argument('--list', action='store_true',
help='List all available templates')
args = parser.parse_args()
if args.list:
list_templates()
return
if not args.model or not args.task:
parser.print_help()
print("\\n" + "=" * 50)
list_templates()
return
try:
generate_template(args.model, args.task, args.output)
except ValueError as e:
print(f"Error: {e}")
print("\\nUse --list to see available templates")
if __name__ == '__main__':
main()

View File

@@ -0,0 +1,313 @@
#!/usr/bin/env python3
"""
Visualize PyTorch Geometric graph structures using networkx and matplotlib.
This script provides utilities to visualize Data objects, including:
- Graph structure (nodes and edges)
- Node features (as colors)
- Edge attributes (as edge colors/widths)
- Community/cluster assignments
Usage:
python visualize_graph.py --dataset Cora --output graph.png
Or import and use:
from scripts.visualize_graph import visualize_data
visualize_data(data, title="My Graph", show_labels=True)
"""
import argparse
import matplotlib.pyplot as plt
import networkx as nx
import torch
from typing import Optional, Union
import numpy as np
def visualize_data(
data,
title: str = "Graph Visualization",
node_color_attr: Optional[str] = None,
edge_color_attr: Optional[str] = None,
show_labels: bool = False,
node_size: int = 300,
figsize: tuple = (12, 10),
layout: str = "spring",
output_path: Optional[str] = None,
max_nodes: Optional[int] = None,
):
"""
Visualize a PyTorch Geometric Data object.
Args:
data: PyTorch Geometric Data object
title: Plot title
node_color_attr: Data attribute to use for node colors (e.g., 'y', 'train_mask')
edge_color_attr: Data attribute to use for edge colors
show_labels: Whether to show node labels
node_size: Size of nodes in visualization
figsize: Figure size (width, height)
layout: Graph layout algorithm ('spring', 'circular', 'kamada_kawai', 'spectral')
output_path: Path to save figure (if None, displays interactively)
max_nodes: Maximum number of nodes to visualize (samples if exceeded)
"""
# Sample nodes if graph is too large
if max_nodes and data.num_nodes > max_nodes:
print(f"Graph has {data.num_nodes} nodes. Sampling {max_nodes} nodes for visualization.")
node_indices = torch.randperm(data.num_nodes)[:max_nodes]
data = data.subgraph(node_indices)
# Convert to networkx graph
G = nx.Graph() if is_undirected(data.edge_index) else nx.DiGraph()
# Add nodes
G.add_nodes_from(range(data.num_nodes))
# Add edges
edge_index = data.edge_index.cpu().numpy()
edges = list(zip(edge_index[0], edge_index[1]))
G.add_edges_from(edges)
# Setup figure
fig, ax = plt.subplots(figsize=figsize)
# Choose layout
if layout == "spring":
pos = nx.spring_layout(G, k=0.5, iterations=50)
elif layout == "circular":
pos = nx.circular_layout(G)
elif layout == "kamada_kawai":
pos = nx.kamada_kawai_layout(G)
elif layout == "spectral":
pos = nx.spectral_layout(G)
else:
raise ValueError(f"Unknown layout: {layout}")
# Determine node colors
if node_color_attr and hasattr(data, node_color_attr):
node_colors = getattr(data, node_color_attr).cpu().numpy()
if node_colors.dtype == bool:
node_colors = node_colors.astype(int)
if len(node_colors.shape) > 1:
# Multi-dimensional features - use first dimension
node_colors = node_colors[:, 0]
else:
node_colors = 'skyblue'
# Determine edge colors
if edge_color_attr and hasattr(data, edge_color_attr):
edge_colors = getattr(data, edge_color_attr).cpu().numpy()
if len(edge_colors.shape) > 1:
edge_colors = edge_colors[:, 0]
else:
edge_colors = 'gray'
# Draw graph
nx.draw_networkx_nodes(
G, pos,
node_color=node_colors,
node_size=node_size,
cmap=plt.cm.viridis,
ax=ax
)
nx.draw_networkx_edges(
G, pos,
edge_color=edge_colors,
alpha=0.3,
arrows=isinstance(G, nx.DiGraph),
arrowsize=10,
ax=ax
)
if show_labels:
nx.draw_networkx_labels(G, pos, font_size=8, ax=ax)
ax.set_title(title, fontsize=16, fontweight='bold')
ax.axis('off')
# Add colorbar if using numeric node colors
if node_color_attr and isinstance(node_colors, np.ndarray):
sm = plt.cm.ScalarMappable(
cmap=plt.cm.viridis,
norm=plt.Normalize(vmin=node_colors.min(), vmax=node_colors.max())
)
sm.set_array([])
cbar = plt.colorbar(sm, ax=ax, fraction=0.046, pad=0.04)
cbar.set_label(node_color_attr, rotation=270, labelpad=20)
plt.tight_layout()
if output_path:
plt.savefig(output_path, dpi=300, bbox_inches='tight')
print(f"Figure saved to {output_path}")
else:
plt.show()
plt.close()
def is_undirected(edge_index):
"""Check if graph is undirected."""
row, col = edge_index
num_edges = edge_index.size(1)
# Create a set of edges and reverse edges
edges = set(zip(row.tolist(), col.tolist()))
reverse_edges = set(zip(col.tolist(), row.tolist()))
# Check if all edges have their reverse
return edges == reverse_edges
def plot_degree_distribution(data, output_path: Optional[str] = None):
"""Plot the degree distribution of the graph."""
from torch_geometric.utils import degree
row, col = data.edge_index
deg = degree(col, data.num_nodes).cpu().numpy()
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(14, 5))
# Histogram
ax1.hist(deg, bins=50, edgecolor='black', alpha=0.7)
ax1.set_xlabel('Degree', fontsize=12)
ax1.set_ylabel('Frequency', fontsize=12)
ax1.set_title('Degree Distribution', fontsize=14, fontweight='bold')
ax1.grid(alpha=0.3)
# Log-log plot
unique_degrees, counts = np.unique(deg, return_counts=True)
ax2.loglog(unique_degrees, counts, 'o-', alpha=0.7)
ax2.set_xlabel('Degree (log scale)', fontsize=12)
ax2.set_ylabel('Frequency (log scale)', fontsize=12)
ax2.set_title('Degree Distribution (Log-Log)', fontsize=14, fontweight='bold')
ax2.grid(alpha=0.3)
plt.tight_layout()
if output_path:
plt.savefig(output_path, dpi=300, bbox_inches='tight')
print(f"Degree distribution saved to {output_path}")
else:
plt.show()
plt.close()
def plot_graph_statistics(data, output_path: Optional[str] = None):
"""Plot various graph statistics."""
from torch_geometric.utils import degree, contains_self_loops, is_undirected as check_undirected
# Compute statistics
row, col = data.edge_index
deg = degree(col, data.num_nodes).cpu().numpy()
stats = {
'Nodes': data.num_nodes,
'Edges': data.num_edges,
'Avg Degree': deg.mean(),
'Max Degree': deg.max(),
'Self-loops': contains_self_loops(data.edge_index),
'Undirected': check_undirected(data.edge_index),
}
if hasattr(data, 'num_node_features'):
stats['Node Features'] = data.num_node_features
if hasattr(data, 'num_edge_features') and data.edge_attr is not None:
stats['Edge Features'] = data.num_edge_features
if hasattr(data, 'y'):
if data.y.dim() == 1:
stats['Classes'] = int(data.y.max().item()) + 1
# Create text plot
fig, ax = plt.subplots(figsize=(8, 6))
ax.axis('off')
text = "Graph Statistics\n" + "=" * 40 + "\n\n"
for key, value in stats.items():
text += f"{key:20s}: {value}\n"
ax.text(0.1, 0.5, text, fontsize=14, family='monospace',
verticalalignment='center', transform=ax.transAxes)
plt.tight_layout()
if output_path:
plt.savefig(output_path, dpi=300, bbox_inches='tight')
print(f"Statistics saved to {output_path}")
else:
plt.show()
plt.close()
# Print to console as well
print("\n" + text)
def main():
parser = argparse.ArgumentParser(description="Visualize PyTorch Geometric graphs")
parser.add_argument('--dataset', type=str, default='Cora',
help='Dataset name (e.g., Cora, CiteSeer, ENZYMES)')
parser.add_argument('--output', type=str, default=None,
help='Output file path for visualization')
parser.add_argument('--node-color', type=str, default='y',
help='Attribute to use for node colors')
parser.add_argument('--layout', type=str, default='spring',
choices=['spring', 'circular', 'kamada_kawai', 'spectral'],
help='Graph layout algorithm')
parser.add_argument('--show-labels', action='store_true',
help='Show node labels')
parser.add_argument('--max-nodes', type=int, default=500,
help='Maximum nodes to visualize')
parser.add_argument('--stats', action='store_true',
help='Show graph statistics')
parser.add_argument('--degree', action='store_true',
help='Show degree distribution')
args = parser.parse_args()
# Load dataset
print(f"Loading dataset: {args.dataset}")
try:
# Try Planetoid datasets
from torch_geometric.datasets import Planetoid
dataset = Planetoid(root=f'/tmp/{args.dataset}', name=args.dataset)
data = dataset[0]
except:
try:
# Try TUDataset
from torch_geometric.datasets import TUDataset
dataset = TUDataset(root=f'/tmp/{args.dataset}', name=args.dataset)
data = dataset[0]
except Exception as e:
print(f"Error loading dataset: {e}")
print("Supported datasets: Cora, CiteSeer, PubMed, ENZYMES, PROTEINS, etc.")
return
print(f"Loaded {args.dataset}: {data.num_nodes} nodes, {data.num_edges} edges")
# Generate visualizations
if args.stats:
stats_output = args.output.replace('.png', '_stats.png') if args.output else None
plot_graph_statistics(data, stats_output)
if args.degree:
degree_output = args.output.replace('.png', '_degree.png') if args.output else None
plot_degree_distribution(data, degree_output)
# Main visualization
visualize_data(
data,
title=f"{args.dataset} Graph",
node_color_attr=args.node_color,
show_labels=args.show_labels,
layout=args.layout,
output_path=args.output,
max_nodes=args.max_nodes
)
if __name__ == '__main__':
main()