Initial commit

This commit is contained in:
Zhongwei Li
2025-11-30 08:30:10 +08:00
commit f0bd18fb4e
824 changed files with 331919 additions and 0 deletions

View File

@@ -0,0 +1,635 @@
# SymPy Advanced Topics
This document covers SymPy's advanced mathematical capabilities including geometry, number theory, combinatorics, logic and sets, statistics, polynomials, and special functions.
## Geometry
### 2D Geometry
```python
from sympy.geometry import Point, Line, Circle, Triangle, Polygon
# Points
p1 = Point(0, 0)
p2 = Point(1, 1)
p3 = Point(1, 0)
# Distance between points
dist = p1.distance(p2)
# Lines
line = Line(p1, p2)
line_from_eq = Line(Point(0, 0), slope=2)
# Line properties
line.slope # Slope
line.equation() # Equation of line
line.length # oo (infinite for lines)
# Line segment
from sympy.geometry import Segment
seg = Segment(p1, p2)
seg.length # Finite length
seg.midpoint # Midpoint
# Intersection
line2 = Line(Point(0, 1), Point(1, 0))
intersection = line.intersection(line2) # [Point(1/2, 1/2)]
# Circles
circle = Circle(Point(0, 0), 5) # Center, radius
circle.area # 25*pi
circle.circumference # 10*pi
# Triangles
tri = Triangle(p1, p2, p3)
tri.area # Area
tri.perimeter # Perimeter
tri.angles # Dictionary of angles
tri.vertices # Tuple of vertices
# Polygons
poly = Polygon(Point(0, 0), Point(1, 0), Point(1, 1), Point(0, 1))
poly.area
poly.perimeter
poly.vertices
```
### Geometric Queries
```python
# Check if point is on line/curve
point = Point(0.5, 0.5)
line.contains(point)
# Check if parallel/perpendicular
line1 = Line(Point(0, 0), Point(1, 1))
line2 = Line(Point(0, 1), Point(1, 2))
line1.is_parallel(line2) # True
line1.is_perpendicular(line2) # False
# Tangent lines
from sympy.geometry import Circle, Point
circle = Circle(Point(0, 0), 5)
point = Point(5, 0)
tangents = circle.tangent_lines(point)
```
### 3D Geometry
```python
from sympy.geometry import Point3D, Line3D, Plane
# 3D Points
p1 = Point3D(0, 0, 0)
p2 = Point3D(1, 1, 1)
p3 = Point3D(1, 0, 0)
# 3D Lines
line = Line3D(p1, p2)
# Planes
plane = Plane(p1, p2, p3) # From 3 points
plane = Plane(Point3D(0, 0, 0), normal_vector=(1, 0, 0)) # From point and normal
# Plane equation
plane.equation()
# Distance from point to plane
point = Point3D(2, 3, 4)
dist = plane.distance(point)
# Intersection of plane and line
intersection = plane.intersection(line)
```
### Curves and Ellipses
```python
from sympy.geometry import Ellipse, Curve
from sympy import sin, cos, pi
# Ellipse
ellipse = Ellipse(Point(0, 0), hradius=3, vradius=2)
ellipse.area # 6*pi
ellipse.eccentricity # Eccentricity
# Parametric curves
from sympy.abc import t
curve = Curve((cos(t), sin(t)), (t, 0, 2*pi)) # Circle
```
## Number Theory
### Prime Numbers
```python
from sympy.ntheory import isprime, primerange, prime, nextprime, prevprime
# Check if prime
isprime(7) # True
isprime(10) # False
# Generate primes in range
list(primerange(10, 50)) # [11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47]
# nth prime
prime(10) # 29 (10th prime)
# Next and previous primes
nextprime(10) # 11
prevprime(10) # 7
```
### Prime Factorization
```python
from sympy import factorint, primefactors, divisors
# Prime factorization
factorint(60) # {2: 2, 3: 1, 5: 1} means 2^2 * 3^1 * 5^1
# List of prime factors
primefactors(60) # [2, 3, 5]
# All divisors
divisors(60) # [1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60]
```
### GCD and LCM
```python
from sympy import gcd, lcm, igcd, ilcm
# Greatest common divisor
gcd(60, 48) # 12
igcd(60, 48) # 12 (integer version)
# Least common multiple
lcm(60, 48) # 240
ilcm(60, 48) # 240 (integer version)
# Multiple arguments
gcd(60, 48, 36) # 12
```
### Modular Arithmetic
```python
from sympy.ntheory import mod_inverse, totient, is_primitive_root
# Modular inverse (find x such that a*x ≡ 1 (mod m))
mod_inverse(3, 7) # 5 (because 3*5 = 15 ≡ 1 (mod 7))
# Euler's totient function
totient(10) # 4 (numbers less than 10 coprime to 10: 1,3,7,9)
# Primitive roots
is_primitive_root(2, 5) # True
```
### Diophantine Equations
```python
from sympy.solvers.diophantine import diophantine
from sympy.abc import x, y, z
# Linear Diophantine: ax + by = c
diophantine(3*x + 4*y - 5) # {(4*t_0 - 5, -3*t_0 + 5)}
# Quadratic forms
diophantine(x**2 + y**2 - 25) # Pythagorean-type equations
# More complex equations
diophantine(x**2 - 4*x*y + 8*y**2 - 3*x + 7*y - 5)
```
### Continued Fractions
```python
from sympy import nsimplify, continued_fraction_iterator
from sympy import Rational, pi
# Convert to continued fraction
cf = continued_fraction_iterator(Rational(415, 93))
list(cf) # [4, 2, 6, 7]
# Approximate irrational numbers
cf_pi = continued_fraction_iterator(pi.evalf(20))
```
## Combinatorics
### Permutations and Combinations
```python
from sympy import factorial, binomial, factorial2
from sympy.functions.combinatorial.numbers import nC, nP
# Factorial
factorial(5) # 120
# Binomial coefficient (n choose k)
binomial(5, 2) # 10
# Permutations nPk = n!/(n-k)!
nP(5, 2) # 20
# Combinations nCk = n!/(k!(n-k)!)
nC(5, 2) # 10
# Double factorial n!!
factorial2(5) # 15 (5*3*1)
factorial2(6) # 48 (6*4*2)
```
### Permutation Objects
```python
from sympy.combinatorics import Permutation
# Create permutation (cycle notation)
p = Permutation([1, 2, 0, 3]) # Sends 0->1, 1->2, 2->0, 3->3
p = Permutation(0, 1, 2)(3) # Cycle notation: (0 1 2)(3)
# Permutation operations
p.order() # Order of permutation
p.is_even # True if even permutation
p.inversions() # Number of inversions
# Compose permutations
q = Permutation([2, 0, 1, 3])
r = p * q # Composition
```
### Partitions
```python
from sympy.utilities.iterables import partitions
from sympy.functions.combinatorial.numbers import partition
# Number of integer partitions
partition(5) # 7 (5, 4+1, 3+2, 3+1+1, 2+2+1, 2+1+1+1, 1+1+1+1+1)
# Generate all partitions
list(partitions(4))
# {4: 1}, {3: 1, 1: 1}, {2: 2}, {2: 1, 1: 2}, {1: 4}
```
### Catalan and Fibonacci Numbers
```python
from sympy import catalan, fibonacci, lucas
# Catalan numbers
catalan(5) # 42
# Fibonacci numbers
fibonacci(10) # 55
lucas(10) # 123 (Lucas numbers)
```
### Group Theory
```python
from sympy.combinatorics import PermutationGroup, Permutation
# Create permutation group
p1 = Permutation([1, 0, 2])
p2 = Permutation([0, 2, 1])
G = PermutationGroup(p1, p2)
# Group properties
G.order() # Order of group
G.is_abelian # Check if abelian
G.is_cyclic() # Check if cyclic
G.elements # All group elements
```
## Logic and Sets
### Boolean Logic
```python
from sympy import symbols, And, Or, Not, Xor, Implies, Equivalent
from sympy.logic.boolalg import truth_table, simplify_logic
# Define boolean variables
x, y, z = symbols('x y z', bool=True)
# Logical operations
expr = And(x, Or(y, Not(z)))
expr = Implies(x, y) # x -> y
expr = Equivalent(x, y) # x <-> y
expr = Xor(x, y) # Exclusive OR
# Simplification
expr = (x & y) | (x & ~y)
simplified = simplify_logic(expr) # Returns x
# Truth table
expr = Implies(x, y)
print(truth_table(expr, [x, y]))
```
### Sets
```python
from sympy import FiniteSet, Interval, Union, Intersection, Complement
from sympy import S # For special sets
# Finite sets
A = FiniteSet(1, 2, 3, 4)
B = FiniteSet(3, 4, 5, 6)
# Set operations
union = Union(A, B) # {1, 2, 3, 4, 5, 6}
intersection = Intersection(A, B) # {3, 4}
difference = Complement(A, B) # {1, 2}
# Intervals
I = Interval(0, 1) # [0, 1]
I_open = Interval.open(0, 1) # (0, 1)
I_lopen = Interval.Lopen(0, 1) # (0, 1]
I_ropen = Interval.Ropen(0, 1) # [0, 1)
# Special sets
S.Reals # All real numbers
S.Integers # All integers
S.Naturals # Natural numbers
S.EmptySet # Empty set
S.Complexes # Complex numbers
# Set membership
3 in A # True
7 in A # False
# Subset and superset
A.is_subset(B) # False
A.is_superset(B) # False
```
### Set Theory Operations
```python
from sympy import ImageSet, Lambda
from sympy.abc import x
# Image set (set of function values)
squares = ImageSet(Lambda(x, x**2), S.Integers)
# {x^2 | x ∈ }
# Power set
from sympy.sets import FiniteSet
A = FiniteSet(1, 2, 3)
# Note: SymPy doesn't have direct powerset, but can generate
```
## Polynomials
### Polynomial Manipulation
```python
from sympy import Poly, symbols, factor, expand, roots
x, y = symbols('x y')
# Create polynomial
p = Poly(x**2 + 2*x + 1, x)
# Polynomial properties
p.degree() # 2
p.coeffs() # [1, 2, 1]
p.as_expr() # Convert back to expression
# Arithmetic
p1 = Poly(x**2 + 1, x)
p2 = Poly(x + 1, x)
p3 = p1 + p2
p4 = p1 * p2
q, r = div(p1, p2) # Quotient and remainder
```
### Polynomial Roots
```python
from sympy import roots, real_roots, count_roots
p = Poly(x**3 - 6*x**2 + 11*x - 6, x)
# All roots
r = roots(p) # {1: 1, 2: 1, 3: 1}
# Real roots only
r = real_roots(p)
# Count roots in interval
count_roots(p, a, b) # Number of roots in [a, b]
```
### Polynomial GCD and Factorization
```python
from sympy import gcd, lcm, factor, factor_list
p1 = Poly(x**2 - 1, x)
p2 = Poly(x**2 - 2*x + 1, x)
# GCD and LCM
g = gcd(p1, p2)
l = lcm(p1, p2)
# Factorization
f = factor(x**3 - x**2 + x - 1) # (x - 1)*(x**2 + 1)
factors = factor_list(x**3 - x**2 + x - 1) # List form
```
### Groebner Bases
```python
from sympy import groebner, symbols
x, y, z = symbols('x y z')
polynomials = [x**2 + y**2 + z**2 - 1, x*y - z]
# Compute Groebner basis
gb = groebner(polynomials, x, y, z)
```
## Statistics
### Random Variables
```python
from sympy.stats import (
Normal, Uniform, Exponential, Poisson, Binomial,
P, E, variance, density, sample
)
# Define random variables
X = Normal('X', 0, 1) # Normal(mean, std)
Y = Uniform('Y', 0, 1) # Uniform(a, b)
Z = Exponential('Z', 1) # Exponential(rate)
# Probability
P(X > 0) # 1/2
P((X > 0) & (X < 1))
# Expected value
E(X) # 0
E(X**2) # 1
# Variance
variance(X) # 1
# Density function
density(X)(x) # sqrt(2)*exp(-x**2/2)/(2*sqrt(pi))
```
### Discrete Distributions
```python
from sympy.stats import Die, Bernoulli, Binomial, Poisson
# Die
D = Die('D', 6)
P(D > 3) # 1/2
# Bernoulli
B = Bernoulli('B', 0.5)
P(B) # 1/2
# Binomial
X = Binomial('X', 10, 0.5)
P(X == 5) # Probability of exactly 5 successes in 10 trials
# Poisson
Y = Poisson('Y', 3)
P(Y < 2) # Probability of less than 2 events
```
### Joint Distributions
```python
from sympy.stats import Normal, P, E
from sympy import symbols
# Independent random variables
X = Normal('X', 0, 1)
Y = Normal('Y', 0, 1)
# Joint probability
P((X > 0) & (Y > 0)) # 1/4
# Covariance
from sympy.stats import covariance
covariance(X, Y) # 0 (independent)
```
## Special Functions
### Common Special Functions
```python
from sympy import (
gamma, # Gamma function
beta, # Beta function
erf, # Error function
besselj, # Bessel function of first kind
bessely, # Bessel function of second kind
hermite, # Hermite polynomial
legendre, # Legendre polynomial
laguerre, # Laguerre polynomial
chebyshevt, # Chebyshev polynomial (first kind)
zeta # Riemann zeta function
)
# Gamma function
gamma(5) # 24 (equivalent to 4!)
gamma(1/2) # sqrt(pi)
# Bessel functions
besselj(0, x) # J_0(x)
bessely(1, x) # Y_1(x)
# Orthogonal polynomials
hermite(3, x) # 8*x**3 - 12*x
legendre(2, x) # (3*x**2 - 1)/2
laguerre(2, x) # x**2/2 - 2*x + 1
chebyshevt(3, x) # 4*x**3 - 3*x
```
### Hypergeometric Functions
```python
from sympy import hyper, meijerg
# Hypergeometric function
hyper([1, 2], [3], x)
# Meijer G-function
meijerg([[1, 1], []], [[1], [0]], x)
```
## Common Patterns
### Pattern 1: Symbolic Geometry Problem
```python
from sympy.geometry import Point, Triangle
from sympy import symbols
# Define symbolic triangle
a, b = symbols('a b', positive=True)
tri = Triangle(Point(0, 0), Point(a, 0), Point(0, b))
# Compute properties symbolically
area = tri.area # a*b/2
perimeter = tri.perimeter # a + b + sqrt(a**2 + b**2)
```
### Pattern 2: Number Theory Calculation
```python
from sympy.ntheory import factorint, totient, isprime
# Factor and analyze
n = 12345
factors = factorint(n)
phi = totient(n)
is_prime = isprime(n)
```
### Pattern 3: Combinatorial Generation
```python
from sympy.utilities.iterables import multiset_permutations, combinations
# Generate all permutations
perms = list(multiset_permutations([1, 2, 3]))
# Generate combinations
combs = list(combinations([1, 2, 3, 4], 2))
```
### Pattern 4: Probability Calculation
```python
from sympy.stats import Normal, P, E, variance
X = Normal('X', mu, sigma)
# Compute statistics
mean = E(X)
var = variance(X)
prob = P(X > a)
```
## Important Notes
1. **Assumptions:** Many operations benefit from symbol assumptions (e.g., `positive=True`, `integer=True`).
2. **Symbolic vs Numeric:** These operations are symbolic. Use `evalf()` for numerical results.
3. **Performance:** Complex symbolic operations can be slow. Consider numerical methods for large-scale computations.
4. **Exact arithmetic:** SymPy maintains exact representations (e.g., `sqrt(2)` instead of `1.414...`).