Initial commit

This commit is contained in:
Zhongwei Li
2025-11-30 08:30:10 +08:00
commit f0bd18fb4e
824 changed files with 331919 additions and 0 deletions

View File

@@ -0,0 +1,770 @@
# Seaborn Function Reference
This document provides a comprehensive reference for all major seaborn functions, organized by category.
## Relational Plots
### scatterplot()
**Purpose:** Create a scatter plot with points representing individual observations.
**Key Parameters:**
- `data` - DataFrame, array, or dict of arrays
- `x, y` - Variables for x and y axes
- `hue` - Grouping variable for color encoding
- `size` - Grouping variable for size encoding
- `style` - Grouping variable for marker style
- `palette` - Color palette name or list
- `hue_order` - Order for categorical hue levels
- `hue_norm` - Normalization for numeric hue (tuple or Normalize object)
- `sizes` - Size range for size encoding (tuple or dict)
- `size_order` - Order for categorical size levels
- `size_norm` - Normalization for numeric size
- `markers` - Marker style(s) (string, list, or dict)
- `style_order` - Order for categorical style levels
- `legend` - How to draw legend: "auto", "brief", "full", or False
- `ax` - Matplotlib axes to plot on
**Example:**
```python
sns.scatterplot(data=df, x='height', y='weight',
hue='gender', size='age', style='smoker',
palette='Set2', sizes=(20, 200))
```
### lineplot()
**Purpose:** Draw a line plot with automatic aggregation and confidence intervals for repeated measures.
**Key Parameters:**
- `data` - DataFrame, array, or dict of arrays
- `x, y` - Variables for x and y axes
- `hue` - Grouping variable for color encoding
- `size` - Grouping variable for line width
- `style` - Grouping variable for line style (dashes)
- `units` - Grouping variable for sampling units (no aggregation within units)
- `estimator` - Function for aggregating across observations (default: mean)
- `errorbar` - Method for error bars: "sd", "se", "pi", ("ci", level), ("pi", level), or None
- `n_boot` - Number of bootstrap iterations for CI computation
- `seed` - Random seed for reproducible bootstrapping
- `sort` - Sort data before plotting
- `err_style` - "band" or "bars" for error representation
- `err_kws` - Additional parameters for error representation
- `markers` - Marker style(s) for emphasizing data points
- `dashes` - Dash style(s) for lines
- `legend` - How to draw legend
- `ax` - Matplotlib axes to plot on
**Example:**
```python
sns.lineplot(data=timeseries, x='time', y='signal',
hue='condition', style='subject',
errorbar=('ci', 95), markers=True)
```
### relplot()
**Purpose:** Figure-level interface for drawing relational plots (scatter or line) onto a FacetGrid.
**Key Parameters:**
All parameters from `scatterplot()` and `lineplot()`, plus:
- `kind` - "scatter" or "line"
- `col` - Categorical variable for column facets
- `row` - Categorical variable for row facets
- `col_wrap` - Wrap columns after this many columns
- `col_order` - Order for column facet levels
- `row_order` - Order for row facet levels
- `height` - Height of each facet in inches
- `aspect` - Aspect ratio (width = height * aspect)
- `facet_kws` - Additional parameters for FacetGrid
**Example:**
```python
sns.relplot(data=df, x='time', y='measurement',
hue='treatment', style='batch',
col='cell_line', row='timepoint',
kind='line', height=3, aspect=1.5)
```
## Distribution Plots
### histplot()
**Purpose:** Plot univariate or bivariate histograms with flexible binning.
**Key Parameters:**
- `data` - DataFrame, array, or dict
- `x, y` - Variables (y optional for bivariate)
- `hue` - Grouping variable
- `weights` - Variable for weighting observations
- `stat` - Aggregate statistic: "count", "frequency", "probability", "percent", "density"
- `bins` - Number of bins, bin edges, or method ("auto", "fd", "doane", "scott", "stone", "rice", "sturges", "sqrt")
- `binwidth` - Width of bins (overrides bins)
- `binrange` - Range for binning (tuple)
- `discrete` - Treat x as discrete (centers bars on values)
- `cumulative` - Compute cumulative distribution
- `common_bins` - Use same bins for all hue levels
- `common_norm` - Normalize across hue levels
- `multiple` - How to handle hue: "layer", "dodge", "stack", "fill"
- `element` - Visual element: "bars", "step", "poly"
- `fill` - Fill bars/elements
- `shrink` - Scale bar width (for multiple="dodge")
- `kde` - Overlay KDE estimate
- `kde_kws` - Parameters for KDE
- `line_kws` - Parameters for step/poly elements
- `thresh` - Minimum count threshold for bins
- `pthresh` - Minimum probability threshold
- `pmax` - Maximum probability for color scaling
- `log_scale` - Log scale for axis (bool or base)
- `legend` - Whether to show legend
- `ax` - Matplotlib axes
**Example:**
```python
sns.histplot(data=df, x='measurement', hue='condition',
stat='density', bins=30, kde=True,
multiple='layer', alpha=0.5)
```
### kdeplot()
**Purpose:** Plot univariate or bivariate kernel density estimates.
**Key Parameters:**
- `data` - DataFrame, array, or dict
- `x, y` - Variables (y optional for bivariate)
- `hue` - Grouping variable
- `weights` - Variable for weighting observations
- `palette` - Color palette
- `hue_order` - Order for hue levels
- `hue_norm` - Normalization for numeric hue
- `multiple` - How to handle hue: "layer", "stack", "fill"
- `common_norm` - Normalize across hue levels
- `common_grid` - Use same grid for all hue levels
- `cumulative` - Compute cumulative distribution
- `bw_method` - Method for bandwidth: "scott", "silverman", or scalar
- `bw_adjust` - Bandwidth multiplier (higher = smoother)
- `log_scale` - Log scale for axis
- `levels` - Number or values for contour levels (bivariate)
- `thresh` - Minimum density threshold for contours
- `gridsize` - Grid resolution
- `cut` - Extension beyond data extremes (in bandwidth units)
- `clip` - Data range for curve (tuple)
- `fill` - Fill area under curve/contours
- `legend` - Whether to show legend
- `ax` - Matplotlib axes
**Example:**
```python
# Univariate
sns.kdeplot(data=df, x='measurement', hue='condition',
fill=True, common_norm=False, bw_adjust=1.5)
# Bivariate
sns.kdeplot(data=df, x='var1', y='var2',
fill=True, levels=10, thresh=0.05)
```
### ecdfplot()
**Purpose:** Plot empirical cumulative distribution functions.
**Key Parameters:**
- `data` - DataFrame, array, or dict
- `x, y` - Variables (specify one)
- `hue` - Grouping variable
- `weights` - Variable for weighting observations
- `stat` - "proportion" or "count"
- `complementary` - Plot complementary CDF (1 - ECDF)
- `palette` - Color palette
- `hue_order` - Order for hue levels
- `hue_norm` - Normalization for numeric hue
- `log_scale` - Log scale for axis
- `legend` - Whether to show legend
- `ax` - Matplotlib axes
**Example:**
```python
sns.ecdfplot(data=df, x='response_time', hue='treatment',
stat='proportion', complementary=False)
```
### rugplot()
**Purpose:** Plot tick marks showing individual observations along an axis.
**Key Parameters:**
- `data` - DataFrame, array, or dict
- `x, y` - Variable (specify one)
- `hue` - Grouping variable
- `height` - Height of ticks (proportion of axis)
- `expand_margins` - Add margin space for rug
- `palette` - Color palette
- `hue_order` - Order for hue levels
- `hue_norm` - Normalization for numeric hue
- `legend` - Whether to show legend
- `ax` - Matplotlib axes
**Example:**
```python
sns.rugplot(data=df, x='value', hue='category', height=0.05)
```
### displot()
**Purpose:** Figure-level interface for distribution plots onto a FacetGrid.
**Key Parameters:**
All parameters from `histplot()`, `kdeplot()`, and `ecdfplot()`, plus:
- `kind` - "hist", "kde", "ecdf"
- `rug` - Add rug plot on marginal axes
- `rug_kws` - Parameters for rug plot
- `col` - Categorical variable for column facets
- `row` - Categorical variable for row facets
- `col_wrap` - Wrap columns
- `col_order` - Order for column facets
- `row_order` - Order for row facets
- `height` - Height of each facet
- `aspect` - Aspect ratio
- `facet_kws` - Additional parameters for FacetGrid
**Example:**
```python
sns.displot(data=df, x='measurement', hue='treatment',
col='timepoint', kind='kde', fill=True,
height=3, aspect=1.5, rug=True)
```
### jointplot()
**Purpose:** Draw a bivariate plot with marginal univariate plots.
**Key Parameters:**
- `data` - DataFrame
- `x, y` - Variables for x and y axes
- `hue` - Grouping variable
- `kind` - "scatter", "kde", "hist", "hex", "reg", "resid"
- `height` - Size of the figure (square)
- `ratio` - Ratio of joint to marginal axes
- `space` - Space between joint and marginal axes
- `dropna` - Drop missing values
- `xlim, ylim` - Axis limits (tuples)
- `marginal_ticks` - Show ticks on marginal axes
- `joint_kws` - Parameters for joint plot
- `marginal_kws` - Parameters for marginal plots
- `hue_order` - Order for hue levels
- `palette` - Color palette
**Example:**
```python
sns.jointplot(data=df, x='var1', y='var2', hue='group',
kind='scatter', height=6, ratio=4,
joint_kws={'alpha': 0.5})
```
### pairplot()
**Purpose:** Plot pairwise relationships in a dataset.
**Key Parameters:**
- `data` - DataFrame
- `hue` - Grouping variable for color encoding
- `hue_order` - Order for hue levels
- `palette` - Color palette
- `vars` - Variables to plot (default: all numeric)
- `x_vars, y_vars` - Variables for x and y axes (non-square grid)
- `kind` - "scatter", "kde", "hist", "reg"
- `diag_kind` - "auto", "hist", "kde", None
- `markers` - Marker style(s)
- `height` - Height of each facet
- `aspect` - Aspect ratio
- `corner` - Plot only lower triangle
- `dropna` - Drop missing values
- `plot_kws` - Parameters for non-diagonal plots
- `diag_kws` - Parameters for diagonal plots
- `grid_kws` - Parameters for PairGrid
**Example:**
```python
sns.pairplot(data=df, hue='species', palette='Set2',
vars=['sepal_length', 'sepal_width', 'petal_length'],
corner=True, height=2.5)
```
## Categorical Plots
### stripplot()
**Purpose:** Draw a categorical scatterplot with jittered points.
**Key Parameters:**
- `data` - DataFrame, array, or dict
- `x, y` - Variables (one categorical, one continuous)
- `hue` - Grouping variable
- `order` - Order for categorical levels
- `hue_order` - Order for hue levels
- `jitter` - Amount of jitter: True, float, or False
- `dodge` - Separate hue levels side-by-side
- `orient` - "v" or "h" (usually inferred)
- `color` - Single color for all elements
- `palette` - Color palette
- `size` - Marker size
- `edgecolor` - Marker edge color
- `linewidth` - Marker edge width
- `native_scale` - Use numeric scale for categorical axis
- `formatter` - Formatter for categorical axis
- `legend` - Whether to show legend
- `ax` - Matplotlib axes
**Example:**
```python
sns.stripplot(data=df, x='day', y='total_bill',
hue='sex', dodge=True, jitter=0.2)
```
### swarmplot()
**Purpose:** Draw a categorical scatterplot with non-overlapping points.
**Key Parameters:**
Same as `stripplot()`, except:
- No `jitter` parameter
- `size` - Marker size (important for avoiding overlap)
- `warn_thresh` - Threshold for warning about too many points (default: 0.05)
**Note:** Computationally intensive for large datasets. Use stripplot for >1000 points.
**Example:**
```python
sns.swarmplot(data=df, x='day', y='total_bill',
hue='time', dodge=True, size=5)
```
### boxplot()
**Purpose:** Draw a box plot showing quartiles and outliers.
**Key Parameters:**
- `data` - DataFrame, array, or dict
- `x, y` - Variables (one categorical, one continuous)
- `hue` - Grouping variable
- `order` - Order for categorical levels
- `hue_order` - Order for hue levels
- `orient` - "v" or "h"
- `color` - Single color for boxes
- `palette` - Color palette
- `saturation` - Color saturation intensity
- `width` - Width of boxes
- `dodge` - Separate hue levels side-by-side
- `fliersize` - Size of outlier markers
- `linewidth` - Box line width
- `whis` - IQR multiplier for whiskers (default: 1.5)
- `notch` - Draw notched boxes
- `showcaps` - Show whisker caps
- `showmeans` - Show mean value
- `meanprops` - Properties for mean marker
- `boxprops` - Properties for boxes
- `whiskerprops` - Properties for whiskers
- `capprops` - Properties for caps
- `flierprops` - Properties for outliers
- `medianprops` - Properties for median line
- `native_scale` - Use numeric scale
- `formatter` - Formatter for categorical axis
- `legend` - Whether to show legend
- `ax` - Matplotlib axes
**Example:**
```python
sns.boxplot(data=df, x='day', y='total_bill',
hue='smoker', palette='Set3',
showmeans=True, notch=True)
```
### violinplot()
**Purpose:** Draw a violin plot combining boxplot and KDE.
**Key Parameters:**
Same as `boxplot()`, plus:
- `bw_method` - KDE bandwidth method
- `bw_adjust` - KDE bandwidth multiplier
- `cut` - KDE extension beyond extremes
- `density_norm` - "area", "count", "width"
- `inner` - "box", "quartile", "point", "stick", None
- `split` - Split violins for hue comparison
- `scale` - Scaling method: "area", "count", "width"
- `scale_hue` - Scale across hue levels
- `gridsize` - KDE grid resolution
**Example:**
```python
sns.violinplot(data=df, x='day', y='total_bill',
hue='sex', split=True, inner='quartile',
palette='muted')
```
### boxenplot()
**Purpose:** Draw enhanced box plot for larger datasets showing more quantiles.
**Key Parameters:**
Same as `boxplot()`, plus:
- `k_depth` - "tukey", "proportion", "trustworthy", "full", or int
- `outlier_prop` - Proportion of data as outliers
- `trust_alpha` - Alpha for trustworthy depth
- `showfliers` - Show outlier points
**Example:**
```python
sns.boxenplot(data=df, x='day', y='total_bill',
hue='time', palette='Set2')
```
### barplot()
**Purpose:** Draw a bar plot with error bars showing statistical estimates.
**Key Parameters:**
- `data` - DataFrame, array, or dict
- `x, y` - Variables (one categorical, one continuous)
- `hue` - Grouping variable
- `order` - Order for categorical levels
- `hue_order` - Order for hue levels
- `estimator` - Aggregation function (default: mean)
- `errorbar` - Error representation: "sd", "se", "pi", ("ci", level), ("pi", level), or None
- `n_boot` - Bootstrap iterations
- `seed` - Random seed
- `units` - Identifier for sampling units
- `weights` - Observation weights
- `orient` - "v" or "h"
- `color` - Single bar color
- `palette` - Color palette
- `saturation` - Color saturation
- `width` - Bar width
- `dodge` - Separate hue levels side-by-side
- `errcolor` - Error bar color
- `errwidth` - Error bar line width
- `capsize` - Error bar cap width
- `native_scale` - Use numeric scale
- `formatter` - Formatter for categorical axis
- `legend` - Whether to show legend
- `ax` - Matplotlib axes
**Example:**
```python
sns.barplot(data=df, x='day', y='total_bill',
hue='sex', estimator='median',
errorbar=('ci', 95), capsize=0.1)
```
### countplot()
**Purpose:** Show counts of observations in each categorical bin.
**Key Parameters:**
Same as `barplot()`, but:
- Only specify one of x or y (the categorical variable)
- No estimator or errorbar (shows counts)
- `stat` - "count" or "percent"
**Example:**
```python
sns.countplot(data=df, x='day', hue='time',
palette='pastel', dodge=True)
```
### pointplot()
**Purpose:** Show point estimates and confidence intervals with connecting lines.
**Key Parameters:**
Same as `barplot()`, plus:
- `markers` - Marker style(s)
- `linestyles` - Line style(s)
- `scale` - Scale for markers
- `join` - Connect points with lines
- `capsize` - Error bar cap width
**Example:**
```python
sns.pointplot(data=df, x='time', y='total_bill',
hue='sex', markers=['o', 's'],
linestyles=['-', '--'], capsize=0.1)
```
### catplot()
**Purpose:** Figure-level interface for categorical plots onto a FacetGrid.
**Key Parameters:**
All parameters from categorical plots, plus:
- `kind` - "strip", "swarm", "box", "violin", "boxen", "bar", "point", "count"
- `col` - Categorical variable for column facets
- `row` - Categorical variable for row facets
- `col_wrap` - Wrap columns
- `col_order` - Order for column facets
- `row_order` - Order for row facets
- `height` - Height of each facet
- `aspect` - Aspect ratio
- `sharex, sharey` - Share axes across facets
- `legend` - Whether to show legend
- `legend_out` - Place legend outside figure
- `facet_kws` - Additional FacetGrid parameters
**Example:**
```python
sns.catplot(data=df, x='day', y='total_bill',
hue='smoker', col='time',
kind='violin', split=True,
height=4, aspect=0.8)
```
## Regression Plots
### regplot()
**Purpose:** Plot data and a linear regression fit.
**Key Parameters:**
- `data` - DataFrame
- `x, y` - Variables or data vectors
- `x_estimator` - Apply estimator to x bins
- `x_bins` - Bin x for estimator
- `x_ci` - CI for binned estimates
- `scatter` - Show scatter points
- `fit_reg` - Plot regression line
- `ci` - CI for regression estimate (int or None)
- `n_boot` - Bootstrap iterations for CI
- `units` - Identifier for sampling units
- `seed` - Random seed
- `order` - Polynomial regression order
- `logistic` - Fit logistic regression
- `lowess` - Fit lowess smoother
- `robust` - Fit robust regression
- `logx` - Log-transform x
- `x_partial, y_partial` - Partial regression (regress out variables)
- `truncate` - Limit regression line to data range
- `dropna` - Drop missing values
- `x_jitter, y_jitter` - Add jitter to data
- `label` - Label for legend
- `color` - Color for all elements
- `marker` - Marker style
- `scatter_kws` - Parameters for scatter
- `line_kws` - Parameters for regression line
- `ax` - Matplotlib axes
**Example:**
```python
sns.regplot(data=df, x='total_bill', y='tip',
order=2, robust=True, ci=95,
scatter_kws={'alpha': 0.5})
```
### lmplot()
**Purpose:** Figure-level interface for regression plots onto a FacetGrid.
**Key Parameters:**
All parameters from `regplot()`, plus:
- `hue` - Grouping variable
- `col` - Column facets
- `row` - Row facets
- `palette` - Color palette
- `col_wrap` - Wrap columns
- `height` - Facet height
- `aspect` - Aspect ratio
- `markers` - Marker style(s)
- `sharex, sharey` - Share axes
- `hue_order` - Order for hue levels
- `col_order` - Order for column facets
- `row_order` - Order for row facets
- `legend` - Whether to show legend
- `legend_out` - Place legend outside
- `facet_kws` - FacetGrid parameters
**Example:**
```python
sns.lmplot(data=df, x='total_bill', y='tip',
hue='smoker', col='time', row='sex',
height=3, aspect=1.2, ci=None)
```
### residplot()
**Purpose:** Plot residuals of a regression.
**Key Parameters:**
Same as `regplot()`, but:
- Always plots residuals (y - predicted) vs x
- Adds horizontal line at y=0
- `lowess` - Fit lowess smoother to residuals
**Example:**
```python
sns.residplot(data=df, x='x', y='y', lowess=True,
scatter_kws={'alpha': 0.5})
```
## Matrix Plots
### heatmap()
**Purpose:** Plot rectangular data as a color-encoded matrix.
**Key Parameters:**
- `data` - 2D array-like data
- `vmin, vmax` - Anchor values for colormap
- `cmap` - Colormap name or object
- `center` - Value at colormap center
- `robust` - Use robust quantiles for colormap range
- `annot` - Annotate cells: True, False, or array
- `fmt` - Format string for annotations (e.g., ".2f")
- `annot_kws` - Parameters for annotations
- `linewidths` - Width of cell borders
- `linecolor` - Color of cell borders
- `cbar` - Draw colorbar
- `cbar_kws` - Colorbar parameters
- `cbar_ax` - Axes for colorbar
- `square` - Force square cells
- `xticklabels, yticklabels` - Tick labels (True, False, int, or list)
- `mask` - Boolean array to mask cells
- `ax` - Matplotlib axes
**Example:**
```python
# Correlation matrix
corr = df.corr()
mask = np.triu(np.ones_like(corr, dtype=bool))
sns.heatmap(corr, mask=mask, annot=True, fmt='.2f',
cmap='coolwarm', center=0, square=True,
linewidths=1, cbar_kws={'shrink': 0.8})
```
### clustermap()
**Purpose:** Plot a hierarchically-clustered heatmap.
**Key Parameters:**
All parameters from `heatmap()`, plus:
- `pivot_kws` - Parameters for pivoting (if needed)
- `method` - Linkage method: "single", "complete", "average", "weighted", "centroid", "median", "ward"
- `metric` - Distance metric for clustering
- `standard_scale` - Standardize data: 0 (rows), 1 (columns), or None
- `z_score` - Z-score normalize data: 0 (rows), 1 (columns), or None
- `row_cluster, col_cluster` - Cluster rows/columns
- `row_linkage, col_linkage` - Precomputed linkage matrices
- `row_colors, col_colors` - Additional color annotations
- `dendrogram_ratio` - Ratio of dendrogram to heatmap
- `colors_ratio` - Ratio of color annotations to heatmap
- `cbar_pos` - Colorbar position (tuple: x, y, width, height)
- `tree_kws` - Parameters for dendrogram
- `figsize` - Figure size
**Example:**
```python
sns.clustermap(data, method='average', metric='euclidean',
z_score=0, cmap='viridis',
row_colors=row_colors, col_colors=col_colors,
figsize=(12, 12), dendrogram_ratio=0.1)
```
## Multi-Plot Grids
### FacetGrid
**Purpose:** Multi-plot grid for plotting conditional relationships.
**Initialization:**
```python
g = sns.FacetGrid(data, row=None, col=None, hue=None,
col_wrap=None, sharex=True, sharey=True,
height=3, aspect=1, palette=None,
row_order=None, col_order=None, hue_order=None,
hue_kws=None, dropna=False, legend_out=True,
despine=True, margin_titles=False,
xlim=None, ylim=None, subplot_kws=None,
gridspec_kws=None)
```
**Methods:**
- `map(func, *args, **kwargs)` - Apply function to each facet
- `map_dataframe(func, *args, **kwargs)` - Apply function with full DataFrame
- `set_axis_labels(x_var, y_var)` - Set axis labels
- `set_titles(template, **kwargs)` - Set subplot titles
- `set(kwargs)` - Set attributes on all axes
- `add_legend(legend_data, title, label_order, **kwargs)` - Add legend
- `savefig(*args, **kwargs)` - Save figure
**Example:**
```python
g = sns.FacetGrid(df, col='time', row='sex', hue='smoker',
height=3, aspect=1.5, margin_titles=True)
g.map(sns.scatterplot, 'total_bill', 'tip', alpha=0.7)
g.add_legend()
g.set_axis_labels('Total Bill ($)', 'Tip ($)')
g.set_titles('{col_name} | {row_name}')
```
### PairGrid
**Purpose:** Grid for plotting pairwise relationships in a dataset.
**Initialization:**
```python
g = sns.PairGrid(data, hue=None, vars=None,
x_vars=None, y_vars=None,
hue_order=None, palette=None,
hue_kws=None, corner=False,
diag_sharey=True, height=2.5,
aspect=1, layout_pad=0.5,
despine=True, dropna=False)
```
**Methods:**
- `map(func, **kwargs)` - Apply function to all subplots
- `map_diag(func, **kwargs)` - Apply to diagonal
- `map_offdiag(func, **kwargs)` - Apply to off-diagonal
- `map_upper(func, **kwargs)` - Apply to upper triangle
- `map_lower(func, **kwargs)` - Apply to lower triangle
- `add_legend(legend_data, **kwargs)` - Add legend
- `savefig(*args, **kwargs)` - Save figure
**Example:**
```python
g = sns.PairGrid(df, hue='species', vars=['a', 'b', 'c', 'd'],
corner=True, height=2.5)
g.map_upper(sns.scatterplot, alpha=0.5)
g.map_lower(sns.kdeplot)
g.map_diag(sns.histplot, kde=True)
g.add_legend()
```
### JointGrid
**Purpose:** Grid for bivariate plot with marginal univariate plots.
**Initialization:**
```python
g = sns.JointGrid(data=None, x=None, y=None, hue=None,
height=6, ratio=5, space=0.2,
dropna=False, xlim=None, ylim=None,
marginal_ticks=False, hue_order=None,
palette=None)
```
**Methods:**
- `plot(joint_func, marginal_func, **kwargs)` - Plot both joint and marginals
- `plot_joint(func, **kwargs)` - Plot joint distribution
- `plot_marginals(func, **kwargs)` - Plot marginal distributions
- `refline(x, y, **kwargs)` - Add reference line
- `set_axis_labels(xlabel, ylabel, **kwargs)` - Set axis labels
- `savefig(*args, **kwargs)` - Save figure
**Example:**
```python
g = sns.JointGrid(data=df, x='x', y='y', hue='group',
height=6, ratio=5, space=0.2)
g.plot_joint(sns.scatterplot, alpha=0.5)
g.plot_marginals(sns.histplot, kde=True)
g.set_axis_labels('Variable X', 'Variable Y')
```