Initial commit
This commit is contained in:
431
skills/scikit-bio/SKILL.md
Normal file
431
skills/scikit-bio/SKILL.md
Normal file
@@ -0,0 +1,431 @@
|
||||
---
|
||||
name: scikit-bio
|
||||
description: "Biological data toolkit. Sequence analysis, alignments, phylogenetic trees, diversity metrics (alpha/beta, UniFrac), ordination (PCoA), PERMANOVA, FASTA/Newick I/O, for microbiome analysis."
|
||||
---
|
||||
|
||||
# scikit-bio
|
||||
|
||||
## Overview
|
||||
|
||||
scikit-bio is a comprehensive Python library for working with biological data. Apply this skill for bioinformatics analyses spanning sequence manipulation, alignment, phylogenetics, microbial ecology, and multivariate statistics.
|
||||
|
||||
## When to Use This Skill
|
||||
|
||||
This skill should be used when the user:
|
||||
- Works with biological sequences (DNA, RNA, protein)
|
||||
- Needs to read/write biological file formats (FASTA, FASTQ, GenBank, Newick, BIOM, etc.)
|
||||
- Performs sequence alignments or searches for motifs
|
||||
- Constructs or analyzes phylogenetic trees
|
||||
- Calculates diversity metrics (alpha/beta diversity, UniFrac distances)
|
||||
- Performs ordination analysis (PCoA, CCA, RDA)
|
||||
- Runs statistical tests on biological/ecological data (PERMANOVA, ANOSIM, Mantel)
|
||||
- Analyzes microbiome or community ecology data
|
||||
- Works with protein embeddings from language models
|
||||
- Needs to manipulate biological data tables
|
||||
|
||||
## Core Capabilities
|
||||
|
||||
### 1. Sequence Manipulation
|
||||
|
||||
Work with biological sequences using specialized classes for DNA, RNA, and protein data.
|
||||
|
||||
**Key operations:**
|
||||
- Read/write sequences from FASTA, FASTQ, GenBank, EMBL formats
|
||||
- Sequence slicing, concatenation, and searching
|
||||
- Reverse complement, transcription (DNA→RNA), and translation (RNA→protein)
|
||||
- Find motifs and patterns using regex
|
||||
- Calculate distances (Hamming, k-mer based)
|
||||
- Handle sequence quality scores and metadata
|
||||
|
||||
**Common patterns:**
|
||||
```python
|
||||
import skbio
|
||||
|
||||
# Read sequences from file
|
||||
seq = skbio.DNA.read('input.fasta')
|
||||
|
||||
# Sequence operations
|
||||
rc = seq.reverse_complement()
|
||||
rna = seq.transcribe()
|
||||
protein = rna.translate()
|
||||
|
||||
# Find motifs
|
||||
motif_positions = seq.find_with_regex('ATG[ACGT]{3}')
|
||||
|
||||
# Check for properties
|
||||
has_degens = seq.has_degenerates()
|
||||
seq_no_gaps = seq.degap()
|
||||
```
|
||||
|
||||
**Important notes:**
|
||||
- Use `DNA`, `RNA`, `Protein` classes for grammared sequences with validation
|
||||
- Use `Sequence` class for generic sequences without alphabet restrictions
|
||||
- Quality scores automatically loaded from FASTQ files into positional metadata
|
||||
- Metadata types: sequence-level (ID, description), positional (per-base), interval (regions/features)
|
||||
|
||||
### 2. Sequence Alignment
|
||||
|
||||
Perform pairwise and multiple sequence alignments using dynamic programming algorithms.
|
||||
|
||||
**Key capabilities:**
|
||||
- Global alignment (Needleman-Wunsch with semi-global variant)
|
||||
- Local alignment (Smith-Waterman)
|
||||
- Configurable scoring schemes (match/mismatch, gap penalties, substitution matrices)
|
||||
- CIGAR string conversion
|
||||
- Multiple sequence alignment storage and manipulation with `TabularMSA`
|
||||
|
||||
**Common patterns:**
|
||||
```python
|
||||
from skbio.alignment import local_pairwise_align_ssw, TabularMSA
|
||||
|
||||
# Pairwise alignment
|
||||
alignment = local_pairwise_align_ssw(seq1, seq2)
|
||||
|
||||
# Access aligned sequences
|
||||
msa = alignment.aligned_sequences
|
||||
|
||||
# Read multiple alignment from file
|
||||
msa = TabularMSA.read('alignment.fasta', constructor=skbio.DNA)
|
||||
|
||||
# Calculate consensus
|
||||
consensus = msa.consensus()
|
||||
```
|
||||
|
||||
**Important notes:**
|
||||
- Use `local_pairwise_align_ssw` for local alignments (faster, SSW-based)
|
||||
- Use `StripedSmithWaterman` for protein alignments
|
||||
- Affine gap penalties recommended for biological sequences
|
||||
- Can convert between scikit-bio, BioPython, and Biotite alignment formats
|
||||
|
||||
### 3. Phylogenetic Trees
|
||||
|
||||
Construct, manipulate, and analyze phylogenetic trees representing evolutionary relationships.
|
||||
|
||||
**Key capabilities:**
|
||||
- Tree construction from distance matrices (UPGMA, WPGMA, Neighbor Joining, GME, BME)
|
||||
- Tree manipulation (pruning, rerooting, traversal)
|
||||
- Distance calculations (patristic, cophenetic, Robinson-Foulds)
|
||||
- ASCII visualization
|
||||
- Newick format I/O
|
||||
|
||||
**Common patterns:**
|
||||
```python
|
||||
from skbio import TreeNode
|
||||
from skbio.tree import nj
|
||||
|
||||
# Read tree from file
|
||||
tree = TreeNode.read('tree.nwk')
|
||||
|
||||
# Construct tree from distance matrix
|
||||
tree = nj(distance_matrix)
|
||||
|
||||
# Tree operations
|
||||
subtree = tree.shear(['taxon1', 'taxon2', 'taxon3'])
|
||||
tips = [node for node in tree.tips()]
|
||||
lca = tree.lowest_common_ancestor(['taxon1', 'taxon2'])
|
||||
|
||||
# Calculate distances
|
||||
patristic_dist = tree.find('taxon1').distance(tree.find('taxon2'))
|
||||
cophenetic_matrix = tree.cophenetic_matrix()
|
||||
|
||||
# Compare trees
|
||||
rf_distance = tree.robinson_foulds(other_tree)
|
||||
```
|
||||
|
||||
**Important notes:**
|
||||
- Use `nj()` for neighbor joining (classic phylogenetic method)
|
||||
- Use `upgma()` for UPGMA (assumes molecular clock)
|
||||
- GME and BME are highly scalable for large trees
|
||||
- Trees can be rooted or unrooted; some metrics require specific rooting
|
||||
|
||||
### 4. Diversity Analysis
|
||||
|
||||
Calculate alpha and beta diversity metrics for microbial ecology and community analysis.
|
||||
|
||||
**Key capabilities:**
|
||||
- Alpha diversity: richness, Shannon entropy, Simpson index, Faith's PD, Pielou's evenness
|
||||
- Beta diversity: Bray-Curtis, Jaccard, weighted/unweighted UniFrac, Euclidean distances
|
||||
- Phylogenetic diversity metrics (require tree input)
|
||||
- Rarefaction and subsampling
|
||||
- Integration with ordination and statistical tests
|
||||
|
||||
**Common patterns:**
|
||||
```python
|
||||
from skbio.diversity import alpha_diversity, beta_diversity
|
||||
import skbio
|
||||
|
||||
# Alpha diversity
|
||||
alpha = alpha_diversity('shannon', counts_matrix, ids=sample_ids)
|
||||
faith_pd = alpha_diversity('faith_pd', counts_matrix, ids=sample_ids,
|
||||
tree=tree, otu_ids=feature_ids)
|
||||
|
||||
# Beta diversity
|
||||
bc_dm = beta_diversity('braycurtis', counts_matrix, ids=sample_ids)
|
||||
unifrac_dm = beta_diversity('unweighted_unifrac', counts_matrix,
|
||||
ids=sample_ids, tree=tree, otu_ids=feature_ids)
|
||||
|
||||
# Get available metrics
|
||||
from skbio.diversity import get_alpha_diversity_metrics
|
||||
print(get_alpha_diversity_metrics())
|
||||
```
|
||||
|
||||
**Important notes:**
|
||||
- Counts must be integers representing abundances, not relative frequencies
|
||||
- Phylogenetic metrics (Faith's PD, UniFrac) require tree and OTU ID mapping
|
||||
- Use `partial_beta_diversity()` for computing specific sample pairs only
|
||||
- Alpha diversity returns Series, beta diversity returns DistanceMatrix
|
||||
|
||||
### 5. Ordination Methods
|
||||
|
||||
Reduce high-dimensional biological data to visualizable lower-dimensional spaces.
|
||||
|
||||
**Key capabilities:**
|
||||
- PCoA (Principal Coordinate Analysis) from distance matrices
|
||||
- CA (Correspondence Analysis) for contingency tables
|
||||
- CCA (Canonical Correspondence Analysis) with environmental constraints
|
||||
- RDA (Redundancy Analysis) for linear relationships
|
||||
- Biplot projection for feature interpretation
|
||||
|
||||
**Common patterns:**
|
||||
```python
|
||||
from skbio.stats.ordination import pcoa, cca
|
||||
|
||||
# PCoA from distance matrix
|
||||
pcoa_results = pcoa(distance_matrix)
|
||||
pc1 = pcoa_results.samples['PC1']
|
||||
pc2 = pcoa_results.samples['PC2']
|
||||
|
||||
# CCA with environmental variables
|
||||
cca_results = cca(species_matrix, environmental_matrix)
|
||||
|
||||
# Save/load ordination results
|
||||
pcoa_results.write('ordination.txt')
|
||||
results = skbio.OrdinationResults.read('ordination.txt')
|
||||
```
|
||||
|
||||
**Important notes:**
|
||||
- PCoA works with any distance/dissimilarity matrix
|
||||
- CCA reveals environmental drivers of community composition
|
||||
- Ordination results include eigenvalues, proportion explained, and sample/feature coordinates
|
||||
- Results integrate with plotting libraries (matplotlib, seaborn, plotly)
|
||||
|
||||
### 6. Statistical Testing
|
||||
|
||||
Perform hypothesis tests specific to ecological and biological data.
|
||||
|
||||
**Key capabilities:**
|
||||
- PERMANOVA: test group differences using distance matrices
|
||||
- ANOSIM: alternative test for group differences
|
||||
- PERMDISP: test homogeneity of group dispersions
|
||||
- Mantel test: correlation between distance matrices
|
||||
- Bioenv: find environmental variables correlated with distances
|
||||
|
||||
**Common patterns:**
|
||||
```python
|
||||
from skbio.stats.distance import permanova, anosim, mantel
|
||||
|
||||
# Test if groups differ significantly
|
||||
permanova_results = permanova(distance_matrix, grouping, permutations=999)
|
||||
print(f"p-value: {permanova_results['p-value']}")
|
||||
|
||||
# ANOSIM test
|
||||
anosim_results = anosim(distance_matrix, grouping, permutations=999)
|
||||
|
||||
# Mantel test between two distance matrices
|
||||
mantel_results = mantel(dm1, dm2, method='pearson', permutations=999)
|
||||
print(f"Correlation: {mantel_results[0]}, p-value: {mantel_results[1]}")
|
||||
```
|
||||
|
||||
**Important notes:**
|
||||
- Permutation tests provide non-parametric significance testing
|
||||
- Use 999+ permutations for robust p-values
|
||||
- PERMANOVA sensitive to dispersion differences; pair with PERMDISP
|
||||
- Mantel tests assess matrix correlation (e.g., geographic vs genetic distance)
|
||||
|
||||
### 7. File I/O and Format Conversion
|
||||
|
||||
Read and write 19+ biological file formats with automatic format detection.
|
||||
|
||||
**Supported formats:**
|
||||
- Sequences: FASTA, FASTQ, GenBank, EMBL, QSeq
|
||||
- Alignments: Clustal, PHYLIP, Stockholm
|
||||
- Trees: Newick
|
||||
- Tables: BIOM (HDF5 and JSON)
|
||||
- Distances: delimited square matrices
|
||||
- Analysis: BLAST+6/7, GFF3, Ordination results
|
||||
- Metadata: TSV/CSV with validation
|
||||
|
||||
**Common patterns:**
|
||||
```python
|
||||
import skbio
|
||||
|
||||
# Read with automatic format detection
|
||||
seq = skbio.DNA.read('file.fasta', format='fasta')
|
||||
tree = skbio.TreeNode.read('tree.nwk')
|
||||
|
||||
# Write to file
|
||||
seq.write('output.fasta', format='fasta')
|
||||
|
||||
# Generator for large files (memory efficient)
|
||||
for seq in skbio.io.read('large.fasta', format='fasta', constructor=skbio.DNA):
|
||||
process(seq)
|
||||
|
||||
# Convert formats
|
||||
seqs = list(skbio.io.read('input.fastq', format='fastq', constructor=skbio.DNA))
|
||||
skbio.io.write(seqs, format='fasta', into='output.fasta')
|
||||
```
|
||||
|
||||
**Important notes:**
|
||||
- Use generators for large files to avoid memory issues
|
||||
- Format can be auto-detected when `into` parameter specified
|
||||
- Some objects can be written to multiple formats
|
||||
- Support for stdin/stdout piping with `verify=False`
|
||||
|
||||
### 8. Distance Matrices
|
||||
|
||||
Create and manipulate distance/dissimilarity matrices with statistical methods.
|
||||
|
||||
**Key capabilities:**
|
||||
- Store symmetric (DistanceMatrix) or asymmetric (DissimilarityMatrix) data
|
||||
- ID-based indexing and slicing
|
||||
- Integration with diversity, ordination, and statistical tests
|
||||
- Read/write delimited text format
|
||||
|
||||
**Common patterns:**
|
||||
```python
|
||||
from skbio import DistanceMatrix
|
||||
import numpy as np
|
||||
|
||||
# Create from array
|
||||
data = np.array([[0, 1, 2], [1, 0, 3], [2, 3, 0]])
|
||||
dm = DistanceMatrix(data, ids=['A', 'B', 'C'])
|
||||
|
||||
# Access distances
|
||||
dist_ab = dm['A', 'B']
|
||||
row_a = dm['A']
|
||||
|
||||
# Read from file
|
||||
dm = DistanceMatrix.read('distances.txt')
|
||||
|
||||
# Use in downstream analyses
|
||||
pcoa_results = pcoa(dm)
|
||||
permanova_results = permanova(dm, grouping)
|
||||
```
|
||||
|
||||
**Important notes:**
|
||||
- DistanceMatrix enforces symmetry and zero diagonal
|
||||
- DissimilarityMatrix allows asymmetric values
|
||||
- IDs enable integration with metadata and biological knowledge
|
||||
- Compatible with pandas, numpy, and scikit-learn
|
||||
|
||||
### 9. Biological Tables
|
||||
|
||||
Work with feature tables (OTU/ASV tables) common in microbiome research.
|
||||
|
||||
**Key capabilities:**
|
||||
- BIOM format I/O (HDF5 and JSON)
|
||||
- Integration with pandas, polars, AnnData, numpy
|
||||
- Data augmentation techniques (phylomix, mixup, compositional methods)
|
||||
- Sample/feature filtering and normalization
|
||||
- Metadata integration
|
||||
|
||||
**Common patterns:**
|
||||
```python
|
||||
from skbio import Table
|
||||
|
||||
# Read BIOM table
|
||||
table = Table.read('table.biom')
|
||||
|
||||
# Access data
|
||||
sample_ids = table.ids(axis='sample')
|
||||
feature_ids = table.ids(axis='observation')
|
||||
counts = table.matrix_data
|
||||
|
||||
# Filter
|
||||
filtered = table.filter(sample_ids_to_keep, axis='sample')
|
||||
|
||||
# Convert to/from pandas
|
||||
df = table.to_dataframe()
|
||||
table = Table.from_dataframe(df)
|
||||
```
|
||||
|
||||
**Important notes:**
|
||||
- BIOM tables are standard in QIIME 2 workflows
|
||||
- Rows typically represent samples, columns represent features (OTUs/ASVs)
|
||||
- Supports sparse and dense representations
|
||||
- Output format configurable (pandas/polars/numpy)
|
||||
|
||||
### 10. Protein Embeddings
|
||||
|
||||
Work with protein language model embeddings for downstream analysis.
|
||||
|
||||
**Key capabilities:**
|
||||
- Store embeddings from protein language models (ESM, ProtTrans, etc.)
|
||||
- Convert embeddings to distance matrices
|
||||
- Generate ordination objects for visualization
|
||||
- Export to numpy/pandas for ML workflows
|
||||
|
||||
**Common patterns:**
|
||||
```python
|
||||
from skbio.embedding import ProteinEmbedding, ProteinVector
|
||||
|
||||
# Create embedding from array
|
||||
embedding = ProteinEmbedding(embedding_array, sequence_ids)
|
||||
|
||||
# Convert to distance matrix for analysis
|
||||
dm = embedding.to_distances(metric='euclidean')
|
||||
|
||||
# PCoA visualization of embedding space
|
||||
pcoa_results = embedding.to_ordination(metric='euclidean', method='pcoa')
|
||||
|
||||
# Export for machine learning
|
||||
array = embedding.to_array()
|
||||
df = embedding.to_dataframe()
|
||||
```
|
||||
|
||||
**Important notes:**
|
||||
- Embeddings bridge protein language models with traditional bioinformatics
|
||||
- Compatible with scikit-bio's distance/ordination/statistics ecosystem
|
||||
- SequenceEmbedding and ProteinEmbedding provide specialized functionality
|
||||
- Useful for sequence clustering, classification, and visualization
|
||||
|
||||
## Best Practices
|
||||
|
||||
### Installation
|
||||
```bash
|
||||
uv pip install scikit-bio
|
||||
```
|
||||
|
||||
### Performance Considerations
|
||||
- Use generators for large sequence files to minimize memory usage
|
||||
- For massive phylogenetic trees, prefer GME or BME over NJ
|
||||
- Beta diversity calculations can be parallelized with `partial_beta_diversity()`
|
||||
- BIOM format (HDF5) more efficient than JSON for large tables
|
||||
|
||||
### Integration with Ecosystem
|
||||
- Sequences interoperate with Biopython via standard formats
|
||||
- Tables integrate with pandas, polars, and AnnData
|
||||
- Distance matrices compatible with scikit-learn
|
||||
- Ordination results visualizable with matplotlib/seaborn/plotly
|
||||
- Works seamlessly with QIIME 2 artifacts (BIOM, trees, distance matrices)
|
||||
|
||||
### Common Workflows
|
||||
1. **Microbiome diversity analysis**: Read BIOM table → Calculate alpha/beta diversity → Ordination (PCoA) → Statistical testing (PERMANOVA)
|
||||
2. **Phylogenetic analysis**: Read sequences → Align → Build distance matrix → Construct tree → Calculate phylogenetic distances
|
||||
3. **Sequence processing**: Read FASTQ → Quality filter → Trim/clean → Find motifs → Translate → Write FASTA
|
||||
4. **Comparative genomics**: Read sequences → Pairwise alignment → Calculate distances → Build tree → Analyze clades
|
||||
|
||||
## Reference Documentation
|
||||
|
||||
For detailed API information, parameter specifications, and advanced usage examples, refer to `references/api_reference.md` which contains comprehensive documentation on:
|
||||
- Complete method signatures and parameters for all capabilities
|
||||
- Extended code examples for complex workflows
|
||||
- Troubleshooting common issues
|
||||
- Performance optimization tips
|
||||
- Integration patterns with other libraries
|
||||
|
||||
## Additional Resources
|
||||
|
||||
- Official documentation: https://scikit.bio/docs/latest/
|
||||
- GitHub repository: https://github.com/scikit-bio/scikit-bio
|
||||
- Forum support: https://forum.qiime2.org (scikit-bio is part of QIIME 2 ecosystem)
|
||||
749
skills/scikit-bio/references/api_reference.md
Normal file
749
skills/scikit-bio/references/api_reference.md
Normal file
@@ -0,0 +1,749 @@
|
||||
# scikit-bio API Reference
|
||||
|
||||
This document provides detailed API information, advanced examples, and troubleshooting guidance for working with scikit-bio.
|
||||
|
||||
## Table of Contents
|
||||
1. [Sequence Classes](#sequence-classes)
|
||||
2. [Alignment Methods](#alignment-methods)
|
||||
3. [Phylogenetic Trees](#phylogenetic-trees)
|
||||
4. [Diversity Metrics](#diversity-metrics)
|
||||
5. [Ordination](#ordination)
|
||||
6. [Statistical Tests](#statistical-tests)
|
||||
7. [Distance Matrices](#distance-matrices)
|
||||
8. [File I/O](#file-io)
|
||||
9. [Troubleshooting](#troubleshooting)
|
||||
|
||||
## Sequence Classes
|
||||
|
||||
### DNA, RNA, and Protein Classes
|
||||
|
||||
```python
|
||||
from skbio import DNA, RNA, Protein, Sequence
|
||||
|
||||
# Creating sequences
|
||||
dna = DNA('ATCGATCG', metadata={'id': 'seq1', 'description': 'Example'})
|
||||
rna = RNA('AUCGAUCG')
|
||||
protein = Protein('ACDEFGHIKLMNPQRSTVWY')
|
||||
|
||||
# Sequence operations
|
||||
dna_rc = dna.reverse_complement() # Reverse complement
|
||||
rna = dna.transcribe() # DNA -> RNA
|
||||
protein = rna.translate() # RNA -> Protein
|
||||
|
||||
# Using genetic code tables
|
||||
protein = rna.translate(genetic_code=11) # Bacterial code
|
||||
```
|
||||
|
||||
### Sequence Searching and Pattern Matching
|
||||
|
||||
```python
|
||||
# Find motifs using regex
|
||||
dna = DNA('ATGCGATCGATGCATCG')
|
||||
motif_locs = dna.find_with_regex('ATG.{3}') # Start codons
|
||||
|
||||
# Find all positions
|
||||
import re
|
||||
for match in re.finditer('ATG', str(dna)):
|
||||
print(f"ATG found at position {match.start()}")
|
||||
|
||||
# k-mer counting
|
||||
from skbio.sequence import _motifs
|
||||
kmers = dna.kmer_frequencies(k=3)
|
||||
```
|
||||
|
||||
### Handling Sequence Metadata
|
||||
|
||||
```python
|
||||
# Sequence-level metadata
|
||||
dna = DNA('ATCG', metadata={'id': 'seq1', 'source': 'E. coli'})
|
||||
print(dna.metadata['id'])
|
||||
|
||||
# Positional metadata (per-base quality scores from FASTQ)
|
||||
from skbio import DNA
|
||||
seqs = DNA.read('reads.fastq', format='fastq', phred_offset=33)
|
||||
quality_scores = seqs.positional_metadata['quality']
|
||||
|
||||
# Interval metadata (features/annotations)
|
||||
dna.interval_metadata.add([(5, 15)], metadata={'type': 'gene', 'name': 'geneA'})
|
||||
```
|
||||
|
||||
### Distance Calculations
|
||||
|
||||
```python
|
||||
from skbio import DNA
|
||||
|
||||
seq1 = DNA('ATCGATCG')
|
||||
seq2 = DNA('ATCG--CG')
|
||||
|
||||
# Hamming distance (default)
|
||||
dist = seq1.distance(seq2)
|
||||
|
||||
# Custom distance function
|
||||
from skbio.sequence.distance import kmer_distance
|
||||
dist = seq1.distance(seq2, metric=kmer_distance)
|
||||
```
|
||||
|
||||
## Alignment Methods
|
||||
|
||||
### Pairwise Alignment
|
||||
|
||||
```python
|
||||
from skbio.alignment import local_pairwise_align_ssw, global_pairwise_align
|
||||
from skbio import DNA, Protein
|
||||
|
||||
# Local alignment (Smith-Waterman via SSW)
|
||||
seq1 = DNA('ATCGATCGATCG')
|
||||
seq2 = DNA('ATCGGGGATCG')
|
||||
alignment = local_pairwise_align_ssw(seq1, seq2)
|
||||
|
||||
# Access alignment details
|
||||
print(f"Score: {alignment.score}")
|
||||
print(f"Start position: {alignment.target_begin}")
|
||||
aligned_seqs = alignment.aligned_sequences
|
||||
|
||||
# Global alignment with custom scoring
|
||||
from skbio.alignment import AlignScorer
|
||||
|
||||
scorer = AlignScorer(
|
||||
match_score=2,
|
||||
mismatch_score=-3,
|
||||
gap_open_penalty=5,
|
||||
gap_extend_penalty=2
|
||||
)
|
||||
|
||||
alignment = global_pairwise_align(seq1, seq2, scorer=scorer)
|
||||
|
||||
# Protein alignment with substitution matrix
|
||||
from skbio.alignment import StripedSmithWaterman
|
||||
|
||||
protein_query = Protein('ACDEFGHIKLMNPQRSTVWY')
|
||||
protein_target = Protein('ACDEFMNPQRSTVWY')
|
||||
|
||||
aligner = StripedSmithWaterman(
|
||||
str(protein_query),
|
||||
gap_open_penalty=11,
|
||||
gap_extend_penalty=1,
|
||||
substitution_matrix='blosum62'
|
||||
)
|
||||
alignment = aligner(str(protein_target))
|
||||
```
|
||||
|
||||
### Multiple Sequence Alignment
|
||||
|
||||
```python
|
||||
from skbio.alignment import TabularMSA
|
||||
from skbio import DNA
|
||||
|
||||
# Read MSA from file
|
||||
msa = TabularMSA.read('alignment.fasta', constructor=DNA)
|
||||
|
||||
# Create MSA manually
|
||||
seqs = [
|
||||
DNA('ATCG--'),
|
||||
DNA('ATGG--'),
|
||||
DNA('ATCGAT')
|
||||
]
|
||||
msa = TabularMSA(seqs)
|
||||
|
||||
# MSA operations
|
||||
consensus = msa.consensus()
|
||||
majority_consensus = msa.majority_consensus()
|
||||
|
||||
# Calculate conservation
|
||||
conservation = msa.conservation()
|
||||
|
||||
# Access sequences
|
||||
first_seq = msa[0]
|
||||
column = msa[:, 2] # Third column
|
||||
|
||||
# Filter gaps
|
||||
degapped_msa = msa.omit_gap_positions(maximum_gap_frequency=0.5)
|
||||
|
||||
# Calculate position-specific scores
|
||||
position_entropies = msa.position_entropies()
|
||||
```
|
||||
|
||||
### CIGAR String Handling
|
||||
|
||||
```python
|
||||
from skbio.alignment import AlignPath
|
||||
|
||||
# Parse CIGAR string
|
||||
cigar = "10M2I5M3D10M"
|
||||
align_path = AlignPath.from_cigar(cigar, target_length=100, query_length=50)
|
||||
|
||||
# Convert alignment to CIGAR
|
||||
alignment = local_pairwise_align_ssw(seq1, seq2)
|
||||
cigar_string = alignment.to_cigar()
|
||||
```
|
||||
|
||||
## Phylogenetic Trees
|
||||
|
||||
### Tree Construction
|
||||
|
||||
```python
|
||||
from skbio import TreeNode, DistanceMatrix
|
||||
from skbio.tree import nj, upgma
|
||||
|
||||
# Distance matrix
|
||||
dm = DistanceMatrix([[0, 5, 9, 9],
|
||||
[5, 0, 10, 10],
|
||||
[9, 10, 0, 8],
|
||||
[9, 10, 8, 0]],
|
||||
ids=['A', 'B', 'C', 'D'])
|
||||
|
||||
# Neighbor joining
|
||||
nj_tree = nj(dm)
|
||||
|
||||
# UPGMA (assumes molecular clock)
|
||||
upgma_tree = upgma(dm)
|
||||
|
||||
# Balanced Minimum Evolution (scalable for large trees)
|
||||
from skbio.tree import bme
|
||||
bme_tree = bme(dm)
|
||||
```
|
||||
|
||||
### Tree Manipulation
|
||||
|
||||
```python
|
||||
from skbio import TreeNode
|
||||
|
||||
# Read tree
|
||||
tree = TreeNode.read('tree.nwk', format='newick')
|
||||
|
||||
# Traversal
|
||||
for node in tree.traverse():
|
||||
print(node.name)
|
||||
|
||||
# Preorder, postorder, levelorder
|
||||
for node in tree.preorder():
|
||||
print(node.name)
|
||||
|
||||
# Get tips only
|
||||
tips = list(tree.tips())
|
||||
|
||||
# Find specific node
|
||||
node = tree.find('taxon_name')
|
||||
|
||||
# Root tree at midpoint
|
||||
rooted_tree = tree.root_at_midpoint()
|
||||
|
||||
# Prune tree to specific taxa
|
||||
pruned = tree.shear(['taxon1', 'taxon2', 'taxon3'])
|
||||
|
||||
# Get subtree
|
||||
lca = tree.lowest_common_ancestor(['taxon1', 'taxon2'])
|
||||
subtree = lca.copy()
|
||||
|
||||
# Add/remove nodes
|
||||
parent = tree.find('parent_name')
|
||||
child = TreeNode(name='new_child', length=0.5)
|
||||
parent.append(child)
|
||||
|
||||
# Remove node
|
||||
node_to_remove = tree.find('taxon_to_remove')
|
||||
node_to_remove.parent.remove(node_to_remove)
|
||||
```
|
||||
|
||||
### Tree Distances and Comparisons
|
||||
|
||||
```python
|
||||
# Patristic distance (branch-length distance)
|
||||
node1 = tree.find('taxon1')
|
||||
node2 = tree.find('taxon2')
|
||||
patristic = node1.distance(node2)
|
||||
|
||||
# Cophenetic matrix (all pairwise distances)
|
||||
cophenetic_dm = tree.cophenetic_matrix()
|
||||
|
||||
# Robinson-Foulds distance (topology comparison)
|
||||
rf_dist = tree.robinson_foulds(other_tree)
|
||||
|
||||
# Compare with unweighted RF
|
||||
rf_dist, max_rf = tree.robinson_foulds(other_tree, proportion=False)
|
||||
|
||||
# Tip-to-tip distances
|
||||
tip_distances = tree.tip_tip_distances()
|
||||
```
|
||||
|
||||
### Tree Visualization
|
||||
|
||||
```python
|
||||
# ASCII art visualization
|
||||
print(tree.ascii_art())
|
||||
|
||||
# For advanced visualization, export to external tools
|
||||
tree.write('tree.nwk', format='newick')
|
||||
|
||||
# Then use ete3, toytree, or ggtree for publication-quality figures
|
||||
```
|
||||
|
||||
## Diversity Metrics
|
||||
|
||||
### Alpha Diversity
|
||||
|
||||
```python
|
||||
from skbio.diversity import alpha_diversity, get_alpha_diversity_metrics
|
||||
import numpy as np
|
||||
|
||||
# Sample count data (samples x features)
|
||||
counts = np.array([
|
||||
[10, 5, 0, 3],
|
||||
[2, 0, 8, 4],
|
||||
[5, 5, 5, 5]
|
||||
])
|
||||
sample_ids = ['Sample1', 'Sample2', 'Sample3']
|
||||
|
||||
# List available metrics
|
||||
print(get_alpha_diversity_metrics())
|
||||
|
||||
# Calculate various alpha diversity metrics
|
||||
shannon = alpha_diversity('shannon', counts, ids=sample_ids)
|
||||
simpson = alpha_diversity('simpson', counts, ids=sample_ids)
|
||||
observed_otus = alpha_diversity('observed_otus', counts, ids=sample_ids)
|
||||
chao1 = alpha_diversity('chao1', counts, ids=sample_ids)
|
||||
|
||||
# Phylogenetic alpha diversity (requires tree)
|
||||
from skbio import TreeNode
|
||||
|
||||
tree = TreeNode.read('tree.nwk')
|
||||
feature_ids = ['OTU1', 'OTU2', 'OTU3', 'OTU4']
|
||||
|
||||
faith_pd = alpha_diversity('faith_pd', counts, ids=sample_ids,
|
||||
tree=tree, otu_ids=feature_ids)
|
||||
```
|
||||
|
||||
### Beta Diversity
|
||||
|
||||
```python
|
||||
from skbio.diversity import beta_diversity, partial_beta_diversity
|
||||
|
||||
# Beta diversity (all pairwise comparisons)
|
||||
bc_dm = beta_diversity('braycurtis', counts, ids=sample_ids)
|
||||
|
||||
# Jaccard (presence/absence)
|
||||
jaccard_dm = beta_diversity('jaccard', counts, ids=sample_ids)
|
||||
|
||||
# Phylogenetic beta diversity
|
||||
unifrac_dm = beta_diversity('unweighted_unifrac', counts,
|
||||
ids=sample_ids,
|
||||
tree=tree,
|
||||
otu_ids=feature_ids)
|
||||
|
||||
weighted_unifrac_dm = beta_diversity('weighted_unifrac', counts,
|
||||
ids=sample_ids,
|
||||
tree=tree,
|
||||
otu_ids=feature_ids)
|
||||
|
||||
# Compute only specific pairs (more efficient)
|
||||
pairs = [('Sample1', 'Sample2'), ('Sample1', 'Sample3')]
|
||||
partial_dm = partial_beta_diversity('braycurtis', counts,
|
||||
ids=sample_ids,
|
||||
id_pairs=pairs)
|
||||
```
|
||||
|
||||
### Rarefaction and Subsampling
|
||||
|
||||
```python
|
||||
from skbio.diversity import subsample_counts
|
||||
|
||||
# Rarefy to minimum depth
|
||||
min_depth = counts.min(axis=1).max()
|
||||
rarefied = [subsample_counts(row, n=min_depth) for row in counts]
|
||||
|
||||
# Multiple rarefactions for confidence intervals
|
||||
import numpy as np
|
||||
rarefactions = []
|
||||
for i in range(100):
|
||||
rarefied_counts = np.array([subsample_counts(row, n=1000) for row in counts])
|
||||
shannon_rare = alpha_diversity('shannon', rarefied_counts)
|
||||
rarefactions.append(shannon_rare)
|
||||
|
||||
# Calculate mean and std
|
||||
mean_shannon = np.mean(rarefactions, axis=0)
|
||||
std_shannon = np.std(rarefactions, axis=0)
|
||||
```
|
||||
|
||||
## Ordination
|
||||
|
||||
### Principal Coordinate Analysis (PCoA)
|
||||
|
||||
```python
|
||||
from skbio.stats.ordination import pcoa
|
||||
from skbio import DistanceMatrix
|
||||
import numpy as np
|
||||
|
||||
# PCoA from distance matrix
|
||||
dm = DistanceMatrix(...)
|
||||
pcoa_results = pcoa(dm)
|
||||
|
||||
# Access coordinates
|
||||
pc1 = pcoa_results.samples['PC1']
|
||||
pc2 = pcoa_results.samples['PC2']
|
||||
|
||||
# Proportion explained
|
||||
prop_explained = pcoa_results.proportion_explained
|
||||
|
||||
# Eigenvalues
|
||||
eigenvalues = pcoa_results.eigvals
|
||||
|
||||
# Save results
|
||||
pcoa_results.write('pcoa_results.txt')
|
||||
|
||||
# Plot with matplotlib
|
||||
import matplotlib.pyplot as plt
|
||||
plt.scatter(pc1, pc2)
|
||||
plt.xlabel(f'PC1 ({prop_explained[0]*100:.1f}%)')
|
||||
plt.ylabel(f'PC2 ({prop_explained[1]*100:.1f}%)')
|
||||
```
|
||||
|
||||
### Canonical Correspondence Analysis (CCA)
|
||||
|
||||
```python
|
||||
from skbio.stats.ordination import cca
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
|
||||
# Species abundance matrix (samples x species)
|
||||
species = np.array([
|
||||
[10, 5, 3],
|
||||
[2, 8, 4],
|
||||
[5, 5, 5]
|
||||
])
|
||||
|
||||
# Environmental variables (samples x variables)
|
||||
env = pd.DataFrame({
|
||||
'pH': [6.5, 7.0, 6.8],
|
||||
'temperature': [20, 25, 22],
|
||||
'depth': [10, 15, 12]
|
||||
})
|
||||
|
||||
# CCA
|
||||
cca_results = cca(species, env,
|
||||
sample_ids=['Site1', 'Site2', 'Site3'],
|
||||
species_ids=['SpeciesA', 'SpeciesB', 'SpeciesC'])
|
||||
|
||||
# Access constrained axes
|
||||
cca1 = cca_results.samples['CCA1']
|
||||
cca2 = cca_results.samples['CCA2']
|
||||
|
||||
# Biplot scores for environmental variables
|
||||
env_scores = cca_results.biplot_scores
|
||||
```
|
||||
|
||||
### Redundancy Analysis (RDA)
|
||||
|
||||
```python
|
||||
from skbio.stats.ordination import rda
|
||||
|
||||
# Similar to CCA but for linear relationships
|
||||
rda_results = rda(species, env,
|
||||
sample_ids=['Site1', 'Site2', 'Site3'],
|
||||
species_ids=['SpeciesA', 'SpeciesB', 'SpeciesC'])
|
||||
```
|
||||
|
||||
## Statistical Tests
|
||||
|
||||
### PERMANOVA
|
||||
|
||||
```python
|
||||
from skbio.stats.distance import permanova
|
||||
from skbio import DistanceMatrix
|
||||
import numpy as np
|
||||
|
||||
# Distance matrix
|
||||
dm = DistanceMatrix(...)
|
||||
|
||||
# Grouping variable
|
||||
grouping = ['Group1', 'Group1', 'Group2', 'Group2', 'Group3', 'Group3']
|
||||
|
||||
# Run PERMANOVA
|
||||
results = permanova(dm, grouping, permutations=999)
|
||||
|
||||
print(f"Test statistic: {results['test statistic']}")
|
||||
print(f"p-value: {results['p-value']}")
|
||||
print(f"Sample size: {results['sample size']}")
|
||||
print(f"Number of groups: {results['number of groups']}")
|
||||
```
|
||||
|
||||
### ANOSIM
|
||||
|
||||
```python
|
||||
from skbio.stats.distance import anosim
|
||||
|
||||
# ANOSIM test
|
||||
results = anosim(dm, grouping, permutations=999)
|
||||
|
||||
print(f"R statistic: {results['test statistic']}")
|
||||
print(f"p-value: {results['p-value']}")
|
||||
```
|
||||
|
||||
### PERMDISP
|
||||
|
||||
```python
|
||||
from skbio.stats.distance import permdisp
|
||||
|
||||
# Test homogeneity of dispersions
|
||||
results = permdisp(dm, grouping, permutations=999)
|
||||
|
||||
print(f"F statistic: {results['test statistic']}")
|
||||
print(f"p-value: {results['p-value']}")
|
||||
```
|
||||
|
||||
### Mantel Test
|
||||
|
||||
```python
|
||||
from skbio.stats.distance import mantel
|
||||
from skbio import DistanceMatrix
|
||||
|
||||
# Two distance matrices to compare
|
||||
dm1 = DistanceMatrix(...) # e.g., genetic distance
|
||||
dm2 = DistanceMatrix(...) # e.g., geographic distance
|
||||
|
||||
# Mantel test
|
||||
r, p_value, n = mantel(dm1, dm2, method='pearson', permutations=999)
|
||||
|
||||
print(f"Correlation: {r}")
|
||||
print(f"p-value: {p_value}")
|
||||
print(f"Sample size: {n}")
|
||||
|
||||
# Spearman correlation
|
||||
r_spearman, p, n = mantel(dm1, dm2, method='spearman', permutations=999)
|
||||
```
|
||||
|
||||
### Partial Mantel Test
|
||||
|
||||
```python
|
||||
from skbio.stats.distance import mantel
|
||||
|
||||
# Control for a third matrix
|
||||
dm3 = DistanceMatrix(...) # controlling variable
|
||||
|
||||
r_partial, p_value, n = mantel(dm1, dm2, method='pearson',
|
||||
permutations=999, alternative='two-sided')
|
||||
```
|
||||
|
||||
## Distance Matrices
|
||||
|
||||
### Creating and Manipulating Distance Matrices
|
||||
|
||||
```python
|
||||
from skbio import DistanceMatrix, DissimilarityMatrix
|
||||
import numpy as np
|
||||
|
||||
# Create from array
|
||||
data = np.array([[0, 1, 2],
|
||||
[1, 0, 3],
|
||||
[2, 3, 0]])
|
||||
dm = DistanceMatrix(data, ids=['A', 'B', 'C'])
|
||||
|
||||
# Access elements
|
||||
dist_ab = dm['A', 'B']
|
||||
row_a = dm['A']
|
||||
|
||||
# Slicing
|
||||
subset_dm = dm.filter(['A', 'C'])
|
||||
|
||||
# Asymmetric dissimilarity matrix
|
||||
asym_data = np.array([[0, 1, 2],
|
||||
[3, 0, 4],
|
||||
[5, 6, 0]])
|
||||
dissim = DissimilarityMatrix(asym_data, ids=['X', 'Y', 'Z'])
|
||||
|
||||
# Read/write
|
||||
dm.write('distances.txt')
|
||||
dm2 = DistanceMatrix.read('distances.txt')
|
||||
|
||||
# Convert to condensed form (for scipy)
|
||||
condensed = dm.condensed_form()
|
||||
|
||||
# Convert to dataframe
|
||||
df = dm.to_data_frame()
|
||||
```
|
||||
|
||||
## File I/O
|
||||
|
||||
### Reading Sequences
|
||||
|
||||
```python
|
||||
import skbio
|
||||
|
||||
# Read single sequence
|
||||
dna = skbio.DNA.read('sequence.fasta', format='fasta')
|
||||
|
||||
# Read multiple sequences (generator)
|
||||
for seq in skbio.io.read('sequences.fasta', format='fasta', constructor=skbio.DNA):
|
||||
print(seq.metadata['id'], len(seq))
|
||||
|
||||
# Read into list
|
||||
sequences = list(skbio.io.read('sequences.fasta', format='fasta',
|
||||
constructor=skbio.DNA))
|
||||
|
||||
# Read FASTQ with quality scores
|
||||
for seq in skbio.io.read('reads.fastq', format='fastq', constructor=skbio.DNA):
|
||||
quality = seq.positional_metadata['quality']
|
||||
print(f"Mean quality: {quality.mean()}")
|
||||
```
|
||||
|
||||
### Writing Sequences
|
||||
|
||||
```python
|
||||
# Write single sequence
|
||||
dna.write('output.fasta', format='fasta')
|
||||
|
||||
# Write multiple sequences
|
||||
sequences = [dna1, dna2, dna3]
|
||||
skbio.io.write(sequences, format='fasta', into='output.fasta')
|
||||
|
||||
# Write with custom line wrapping
|
||||
dna.write('output.fasta', format='fasta', max_width=60)
|
||||
```
|
||||
|
||||
### BIOM Tables
|
||||
|
||||
```python
|
||||
from skbio import Table
|
||||
|
||||
# Read BIOM table
|
||||
table = Table.read('table.biom', format='hdf5')
|
||||
|
||||
# Access data
|
||||
sample_ids = table.ids(axis='sample')
|
||||
feature_ids = table.ids(axis='observation')
|
||||
matrix = table.matrix_data.toarray() # if sparse
|
||||
|
||||
# Filter samples
|
||||
abundant_samples = table.filter(lambda row, id_, md: row.sum() > 1000, axis='sample')
|
||||
|
||||
# Filter features (OTUs/ASVs)
|
||||
prevalent_features = table.filter(lambda col, id_, md: (col > 0).sum() >= 3,
|
||||
axis='observation')
|
||||
|
||||
# Normalize
|
||||
relative_abundance = table.norm(axis='sample', inplace=False)
|
||||
|
||||
# Write
|
||||
table.write('filtered_table.biom', format='hdf5')
|
||||
```
|
||||
|
||||
### Format Conversion
|
||||
|
||||
```python
|
||||
# FASTQ to FASTA
|
||||
seqs = skbio.io.read('input.fastq', format='fastq', constructor=skbio.DNA)
|
||||
skbio.io.write(seqs, format='fasta', into='output.fasta')
|
||||
|
||||
# GenBank to FASTA
|
||||
seqs = skbio.io.read('genes.gb', format='genbank', constructor=skbio.DNA)
|
||||
skbio.io.write(seqs, format='fasta', into='genes.fasta')
|
||||
```
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
### Common Issues and Solutions
|
||||
|
||||
#### Issue: "ValueError: Ids must be unique"
|
||||
```python
|
||||
# Problem: Duplicate sequence IDs
|
||||
# Solution: Make IDs unique or filter duplicates
|
||||
seen = set()
|
||||
unique_seqs = []
|
||||
for seq in sequences:
|
||||
if seq.metadata['id'] not in seen:
|
||||
unique_seqs.append(seq)
|
||||
seen.add(seq.metadata['id'])
|
||||
```
|
||||
|
||||
#### Issue: "ValueError: Counts must be integers"
|
||||
```python
|
||||
# Problem: Relative abundances instead of counts
|
||||
# Solution: Convert to integer counts or use appropriate metrics
|
||||
counts_int = (abundance_table * 1000).astype(int)
|
||||
```
|
||||
|
||||
#### Issue: Memory error with large files
|
||||
```python
|
||||
# Problem: Loading entire file into memory
|
||||
# Solution: Use generators
|
||||
for seq in skbio.io.read('huge.fasta', format='fasta', constructor=skbio.DNA):
|
||||
# Process one at a time
|
||||
process(seq)
|
||||
```
|
||||
|
||||
#### Issue: Tree tips don't match OTU IDs
|
||||
```python
|
||||
# Problem: Mismatch between tree tip names and feature IDs
|
||||
# Solution: Verify and align IDs
|
||||
tree_tips = {tip.name for tip in tree.tips()}
|
||||
feature_ids = set(feature_ids)
|
||||
missing_in_tree = feature_ids - tree_tips
|
||||
missing_in_table = tree_tips - feature_ids
|
||||
|
||||
# Prune tree to match table
|
||||
tree_pruned = tree.shear(feature_ids)
|
||||
```
|
||||
|
||||
#### Issue: Alignment fails with sequences of different lengths
|
||||
```python
|
||||
# Problem: Trying to align pre-aligned sequences
|
||||
# Solution: Degap sequences first or ensure sequences are unaligned
|
||||
seq1_degapped = seq1.degap()
|
||||
seq2_degapped = seq2.degap()
|
||||
alignment = local_pairwise_align_ssw(seq1_degapped, seq2_degapped)
|
||||
```
|
||||
|
||||
### Performance Tips
|
||||
|
||||
1. **Use appropriate data structures**: BIOM HDF5 for large tables, generators for large sequence files
|
||||
2. **Parallel processing**: Use `partial_beta_diversity()` for subset calculations that can be parallelized
|
||||
3. **Subsample large datasets**: For exploratory analysis, work with subsampled data first
|
||||
4. **Cache results**: Save distance matrices and ordination results to avoid recomputation
|
||||
|
||||
### Integration Examples
|
||||
|
||||
#### With pandas
|
||||
```python
|
||||
import pandas as pd
|
||||
from skbio import DistanceMatrix
|
||||
|
||||
# Distance matrix to DataFrame
|
||||
dm = DistanceMatrix(...)
|
||||
df = dm.to_data_frame()
|
||||
|
||||
# Alpha diversity to DataFrame
|
||||
alpha = alpha_diversity('shannon', counts, ids=sample_ids)
|
||||
alpha_df = pd.DataFrame({'shannon': alpha})
|
||||
```
|
||||
|
||||
#### With matplotlib/seaborn
|
||||
```python
|
||||
import matplotlib.pyplot as plt
|
||||
import seaborn as sns
|
||||
|
||||
# PCoA plot
|
||||
fig, ax = plt.subplots()
|
||||
scatter = ax.scatter(pc1, pc2, c=grouping, cmap='viridis')
|
||||
ax.set_xlabel(f'PC1 ({prop_explained[0]*100:.1f}%)')
|
||||
ax.set_ylabel(f'PC2 ({prop_explained[1]*100:.1f}%)')
|
||||
plt.colorbar(scatter)
|
||||
|
||||
# Heatmap of distance matrix
|
||||
sns.heatmap(dm.to_data_frame(), cmap='viridis')
|
||||
```
|
||||
|
||||
#### With QIIME 2
|
||||
```python
|
||||
# scikit-bio objects are compatible with QIIME 2
|
||||
# Export from QIIME 2
|
||||
# qiime tools export --input-path table.qza --output-path exported/
|
||||
|
||||
# Read in scikit-bio
|
||||
table = Table.read('exported/feature-table.biom')
|
||||
|
||||
# Process with scikit-bio
|
||||
# ...
|
||||
|
||||
# Import back to QIIME 2 if needed
|
||||
table.write('processed-table.biom')
|
||||
# qiime tools import --input-path processed-table.biom --output-path processed.qza
|
||||
```
|
||||
Reference in New Issue
Block a user