Initial commit
This commit is contained in:
295
skills/rdkit/scripts/similarity_search.py
Normal file
295
skills/rdkit/scripts/similarity_search.py
Normal file
@@ -0,0 +1,295 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Molecular Similarity Search
|
||||
|
||||
Perform fingerprint-based similarity screening against a database of molecules.
|
||||
Supports multiple fingerprint types and similarity metrics.
|
||||
|
||||
Usage:
|
||||
python similarity_search.py "CCO" database.smi --threshold 0.7
|
||||
python similarity_search.py query.smi database.sdf --method morgan --output hits.csv
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
try:
|
||||
from rdkit import Chem
|
||||
from rdkit.Chem import AllChem, MACCSkeys
|
||||
from rdkit import DataStructs
|
||||
except ImportError:
|
||||
print("Error: RDKit not installed. Install with: conda install -c conda-forge rdkit")
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
FINGERPRINT_METHODS = {
|
||||
'morgan': 'Morgan fingerprint (ECFP-like)',
|
||||
'rdkit': 'RDKit topological fingerprint',
|
||||
'maccs': 'MACCS structural keys',
|
||||
'atompair': 'Atom pair fingerprint',
|
||||
'torsion': 'Topological torsion fingerprint'
|
||||
}
|
||||
|
||||
|
||||
def generate_fingerprint(mol, method='morgan', radius=2, n_bits=2048):
|
||||
"""Generate molecular fingerprint based on specified method."""
|
||||
if mol is None:
|
||||
return None
|
||||
|
||||
method = method.lower()
|
||||
|
||||
if method == 'morgan':
|
||||
return AllChem.GetMorganFingerprintAsBitVect(mol, radius, nBits=n_bits)
|
||||
elif method == 'rdkit':
|
||||
return Chem.RDKFingerprint(mol, maxPath=7, fpSize=n_bits)
|
||||
elif method == 'maccs':
|
||||
return MACCSkeys.GenMACCSKeys(mol)
|
||||
elif method == 'atompair':
|
||||
from rdkit.Chem.AtomPairs import Pairs
|
||||
return Pairs.GetAtomPairFingerprintAsBitVect(mol, nBits=n_bits)
|
||||
elif method == 'torsion':
|
||||
from rdkit.Chem.AtomPairs import Torsions
|
||||
return Torsions.GetHashedTopologicalTorsionFingerprintAsBitVect(mol, nBits=n_bits)
|
||||
else:
|
||||
raise ValueError(f"Unknown fingerprint method: {method}")
|
||||
|
||||
|
||||
def load_molecules(file_path):
|
||||
"""Load molecules from file."""
|
||||
path = Path(file_path)
|
||||
|
||||
if not path.exists():
|
||||
print(f"Error: File not found: {file_path}")
|
||||
return []
|
||||
|
||||
molecules = []
|
||||
|
||||
if path.suffix.lower() in ['.sdf', '.mol']:
|
||||
suppl = Chem.SDMolSupplier(str(path))
|
||||
elif path.suffix.lower() in ['.smi', '.smiles', '.txt']:
|
||||
suppl = Chem.SmilesMolSupplier(str(path), titleLine=False)
|
||||
else:
|
||||
print(f"Error: Unsupported file format: {path.suffix}")
|
||||
return []
|
||||
|
||||
for idx, mol in enumerate(suppl):
|
||||
if mol is None:
|
||||
print(f"Warning: Failed to parse molecule {idx+1}")
|
||||
continue
|
||||
|
||||
# Try to get molecule name
|
||||
name = mol.GetProp('_Name') if mol.HasProp('_Name') else f"Mol_{idx+1}"
|
||||
smiles = Chem.MolToSmiles(mol)
|
||||
|
||||
molecules.append({
|
||||
'index': idx + 1,
|
||||
'name': name,
|
||||
'smiles': smiles,
|
||||
'mol': mol
|
||||
})
|
||||
|
||||
return molecules
|
||||
|
||||
|
||||
def similarity_search(query_mol, database, method='morgan', threshold=0.7,
|
||||
radius=2, n_bits=2048, metric='tanimoto'):
|
||||
"""
|
||||
Perform similarity search.
|
||||
|
||||
Args:
|
||||
query_mol: Query molecule (RDKit Mol object)
|
||||
database: List of database molecules
|
||||
method: Fingerprint method
|
||||
threshold: Similarity threshold (0-1)
|
||||
radius: Morgan fingerprint radius
|
||||
n_bits: Fingerprint size
|
||||
metric: Similarity metric (tanimoto, dice, cosine)
|
||||
|
||||
Returns:
|
||||
List of hits with similarity scores
|
||||
"""
|
||||
if query_mol is None:
|
||||
print("Error: Invalid query molecule")
|
||||
return []
|
||||
|
||||
# Generate query fingerprint
|
||||
query_fp = generate_fingerprint(query_mol, method, radius, n_bits)
|
||||
if query_fp is None:
|
||||
print("Error: Failed to generate query fingerprint")
|
||||
return []
|
||||
|
||||
# Choose similarity function
|
||||
if metric.lower() == 'tanimoto':
|
||||
sim_func = DataStructs.TanimotoSimilarity
|
||||
elif metric.lower() == 'dice':
|
||||
sim_func = DataStructs.DiceSimilarity
|
||||
elif metric.lower() == 'cosine':
|
||||
sim_func = DataStructs.CosineSimilarity
|
||||
else:
|
||||
raise ValueError(f"Unknown similarity metric: {metric}")
|
||||
|
||||
# Search database
|
||||
hits = []
|
||||
for db_entry in database:
|
||||
db_fp = generate_fingerprint(db_entry['mol'], method, radius, n_bits)
|
||||
if db_fp is None:
|
||||
continue
|
||||
|
||||
similarity = sim_func(query_fp, db_fp)
|
||||
|
||||
if similarity >= threshold:
|
||||
hits.append({
|
||||
'index': db_entry['index'],
|
||||
'name': db_entry['name'],
|
||||
'smiles': db_entry['smiles'],
|
||||
'similarity': similarity
|
||||
})
|
||||
|
||||
# Sort by similarity (descending)
|
||||
hits.sort(key=lambda x: x['similarity'], reverse=True)
|
||||
|
||||
return hits
|
||||
|
||||
|
||||
def write_results(hits, output_file):
|
||||
"""Write results to CSV file."""
|
||||
import csv
|
||||
|
||||
with open(output_file, 'w', newline='') as f:
|
||||
fieldnames = ['Rank', 'Index', 'Name', 'SMILES', 'Similarity']
|
||||
writer = csv.DictWriter(f, fieldnames=fieldnames)
|
||||
writer.writeheader()
|
||||
|
||||
for rank, hit in enumerate(hits, 1):
|
||||
writer.writerow({
|
||||
'Rank': rank,
|
||||
'Index': hit['index'],
|
||||
'Name': hit['name'],
|
||||
'SMILES': hit['smiles'],
|
||||
'Similarity': f"{hit['similarity']:.4f}"
|
||||
})
|
||||
|
||||
|
||||
def print_results(hits, max_display=20):
|
||||
"""Print results to console."""
|
||||
if not hits:
|
||||
print("\nNo hits found above threshold")
|
||||
return
|
||||
|
||||
print(f"\nFound {len(hits)} similar molecules:")
|
||||
print("="*80)
|
||||
print(f"{'Rank':<6} {'Index':<8} {'Similarity':<12} {'Name':<20} {'SMILES'}")
|
||||
print("-"*80)
|
||||
|
||||
for rank, hit in enumerate(hits[:max_display], 1):
|
||||
name = hit['name'][:18] + '..' if len(hit['name']) > 20 else hit['name']
|
||||
smiles = hit['smiles'][:40] + '...' if len(hit['smiles']) > 43 else hit['smiles']
|
||||
print(f"{rank:<6} {hit['index']:<8} {hit['similarity']:<12.4f} {name:<20} {smiles}")
|
||||
|
||||
if len(hits) > max_display:
|
||||
print(f"\n... and {len(hits) - max_display} more")
|
||||
|
||||
print("="*80)
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(
|
||||
description='Molecular similarity search using fingerprints',
|
||||
formatter_class=argparse.RawDescriptionHelpFormatter,
|
||||
epilog=f"""
|
||||
Available fingerprint methods:
|
||||
{chr(10).join(f' {k:12s} - {v}' for k, v in FINGERPRINT_METHODS.items())}
|
||||
|
||||
Similarity metrics:
|
||||
tanimoto - Tanimoto coefficient (default)
|
||||
dice - Dice coefficient
|
||||
cosine - Cosine similarity
|
||||
|
||||
Examples:
|
||||
# Search with SMILES query
|
||||
python similarity_search.py "CCO" database.smi --threshold 0.7
|
||||
|
||||
# Use different fingerprint
|
||||
python similarity_search.py query.smi database.sdf --method maccs
|
||||
|
||||
# Save results
|
||||
python similarity_search.py "c1ccccc1" database.smi --output hits.csv
|
||||
|
||||
# Adjust Morgan radius
|
||||
python similarity_search.py "CCO" database.smi --method morgan --radius 3
|
||||
"""
|
||||
)
|
||||
|
||||
parser.add_argument('query', help='Query SMILES or file')
|
||||
parser.add_argument('database', help='Database file (SDF or SMILES)')
|
||||
parser.add_argument('--method', '-m', default='morgan',
|
||||
choices=FINGERPRINT_METHODS.keys(),
|
||||
help='Fingerprint method (default: morgan)')
|
||||
parser.add_argument('--threshold', '-t', type=float, default=0.7,
|
||||
help='Similarity threshold (default: 0.7)')
|
||||
parser.add_argument('--radius', '-r', type=int, default=2,
|
||||
help='Morgan fingerprint radius (default: 2)')
|
||||
parser.add_argument('--bits', '-b', type=int, default=2048,
|
||||
help='Fingerprint size (default: 2048)')
|
||||
parser.add_argument('--metric', default='tanimoto',
|
||||
choices=['tanimoto', 'dice', 'cosine'],
|
||||
help='Similarity metric (default: tanimoto)')
|
||||
parser.add_argument('--output', '-o', help='Output CSV file')
|
||||
parser.add_argument('--max-display', type=int, default=20,
|
||||
help='Maximum hits to display (default: 20)')
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
# Load query
|
||||
query_path = Path(args.query)
|
||||
if query_path.exists():
|
||||
# Query is a file
|
||||
query_mols = load_molecules(args.query)
|
||||
if not query_mols:
|
||||
print("Error: No valid molecules in query file")
|
||||
sys.exit(1)
|
||||
query_mol = query_mols[0]['mol']
|
||||
query_smiles = query_mols[0]['smiles']
|
||||
else:
|
||||
# Query is SMILES string
|
||||
query_mol = Chem.MolFromSmiles(args.query)
|
||||
query_smiles = args.query
|
||||
if query_mol is None:
|
||||
print(f"Error: Failed to parse query SMILES: {args.query}")
|
||||
sys.exit(1)
|
||||
|
||||
print(f"Query: {query_smiles}")
|
||||
print(f"Method: {args.method}")
|
||||
print(f"Threshold: {args.threshold}")
|
||||
print(f"Loading database: {args.database}...")
|
||||
|
||||
# Load database
|
||||
database = load_molecules(args.database)
|
||||
if not database:
|
||||
print("Error: No valid molecules in database")
|
||||
sys.exit(1)
|
||||
|
||||
print(f"Loaded {len(database)} molecules")
|
||||
print("Searching...")
|
||||
|
||||
# Perform search
|
||||
hits = similarity_search(
|
||||
query_mol, database,
|
||||
method=args.method,
|
||||
threshold=args.threshold,
|
||||
radius=args.radius,
|
||||
n_bits=args.bits,
|
||||
metric=args.metric
|
||||
)
|
||||
|
||||
# Output results
|
||||
if args.output:
|
||||
write_results(hits, args.output)
|
||||
print(f"\nResults written to: {args.output}")
|
||||
|
||||
print_results(hits, args.max_display)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
Reference in New Issue
Block a user