Initial commit

This commit is contained in:
Zhongwei Li
2025-11-30 08:30:10 +08:00
commit f0bd18fb4e
824 changed files with 331919 additions and 0 deletions

763
skills/rdkit/SKILL.md Normal file
View File

@@ -0,0 +1,763 @@
---
name: rdkit
description: "Cheminformatics toolkit for fine-grained molecular control. SMILES/SDF parsing, descriptors (MW, LogP, TPSA), fingerprints, substructure search, 2D/3D generation, similarity, reactions. For standard workflows with simpler interface, use datamol (wrapper around RDKit). Use rdkit for advanced control, custom sanitization, specialized algorithms."
---
# RDKit Cheminformatics Toolkit
## Overview
RDKit is a comprehensive cheminformatics library providing Python APIs for molecular analysis and manipulation. This skill provides guidance for reading/writing molecular structures, calculating descriptors, fingerprinting, substructure searching, chemical reactions, 2D/3D coordinate generation, and molecular visualization. Use this skill for drug discovery, computational chemistry, and cheminformatics research tasks.
## Core Capabilities
### 1. Molecular I/O and Creation
**Reading Molecules:**
Read molecular structures from various formats:
```python
from rdkit import Chem
# From SMILES strings
mol = Chem.MolFromSmiles('Cc1ccccc1') # Returns Mol object or None
# From MOL files
mol = Chem.MolFromMolFile('path/to/file.mol')
# From MOL blocks (string data)
mol = Chem.MolFromMolBlock(mol_block_string)
# From InChI
mol = Chem.MolFromInchi('InChI=1S/C6H6/c1-2-4-6-5-3-1/h1-6H')
```
**Writing Molecules:**
Convert molecules to text representations:
```python
# To canonical SMILES
smiles = Chem.MolToSmiles(mol)
# To MOL block
mol_block = Chem.MolToMolBlock(mol)
# To InChI
inchi = Chem.MolToInchi(mol)
```
**Batch Processing:**
For processing multiple molecules, use Supplier/Writer objects:
```python
# Read SDF files
suppl = Chem.SDMolSupplier('molecules.sdf')
for mol in suppl:
if mol is not None: # Check for parsing errors
# Process molecule
pass
# Read SMILES files
suppl = Chem.SmilesMolSupplier('molecules.smi', titleLine=False)
# For large files or compressed data
with gzip.open('molecules.sdf.gz') as f:
suppl = Chem.ForwardSDMolSupplier(f)
for mol in suppl:
# Process molecule
pass
# Multithreaded processing for large datasets
suppl = Chem.MultithreadedSDMolSupplier('molecules.sdf')
# Write molecules to SDF
writer = Chem.SDWriter('output.sdf')
for mol in molecules:
writer.write(mol)
writer.close()
```
**Important Notes:**
- All `MolFrom*` functions return `None` on failure with error messages
- Always check for `None` before processing molecules
- Molecules are automatically sanitized on import (validates valence, perceives aromaticity)
### 2. Molecular Sanitization and Validation
RDKit automatically sanitizes molecules during parsing, executing 13 steps including valence checking, aromaticity perception, and chirality assignment.
**Sanitization Control:**
```python
# Disable automatic sanitization
mol = Chem.MolFromSmiles('C1=CC=CC=C1', sanitize=False)
# Manual sanitization
Chem.SanitizeMol(mol)
# Detect problems before sanitization
problems = Chem.DetectChemistryProblems(mol)
for problem in problems:
print(problem.GetType(), problem.Message())
# Partial sanitization (skip specific steps)
from rdkit.Chem import rdMolStandardize
Chem.SanitizeMol(mol, sanitizeOps=Chem.SANITIZE_ALL ^ Chem.SANITIZE_PROPERTIES)
```
**Common Sanitization Issues:**
- Atoms with explicit valence exceeding maximum allowed will raise exceptions
- Invalid aromatic rings will cause kekulization errors
- Radical electrons may not be properly assigned without explicit specification
### 3. Molecular Analysis and Properties
**Accessing Molecular Structure:**
```python
# Iterate atoms and bonds
for atom in mol.GetAtoms():
print(atom.GetSymbol(), atom.GetIdx(), atom.GetDegree())
for bond in mol.GetBonds():
print(bond.GetBeginAtomIdx(), bond.GetEndAtomIdx(), bond.GetBondType())
# Ring information
ring_info = mol.GetRingInfo()
ring_info.NumRings()
ring_info.AtomRings() # Returns tuples of atom indices
# Check if atom is in ring
atom = mol.GetAtomWithIdx(0)
atom.IsInRing()
atom.IsInRingSize(6) # Check for 6-membered rings
# Find smallest set of smallest rings (SSSR)
from rdkit.Chem import GetSymmSSSR
rings = GetSymmSSSR(mol)
```
**Stereochemistry:**
```python
# Find chiral centers
from rdkit.Chem import FindMolChiralCenters
chiral_centers = FindMolChiralCenters(mol, includeUnassigned=True)
# Returns list of (atom_idx, chirality) tuples
# Assign stereochemistry from 3D coordinates
from rdkit.Chem import AssignStereochemistryFrom3D
AssignStereochemistryFrom3D(mol)
# Check bond stereochemistry
bond = mol.GetBondWithIdx(0)
stereo = bond.GetStereo() # STEREONONE, STEREOZ, STEREOE, etc.
```
**Fragment Analysis:**
```python
# Get disconnected fragments
frags = Chem.GetMolFrags(mol, asMols=True)
# Fragment on specific bonds
from rdkit.Chem import FragmentOnBonds
frag_mol = FragmentOnBonds(mol, [bond_idx1, bond_idx2])
# Count ring systems
from rdkit.Chem.Scaffolds import MurckoScaffold
scaffold = MurckoScaffold.GetScaffoldForMol(mol)
```
### 4. Molecular Descriptors and Properties
**Basic Descriptors:**
```python
from rdkit.Chem import Descriptors
# Molecular weight
mw = Descriptors.MolWt(mol)
exact_mw = Descriptors.ExactMolWt(mol)
# LogP (lipophilicity)
logp = Descriptors.MolLogP(mol)
# Topological polar surface area
tpsa = Descriptors.TPSA(mol)
# Number of hydrogen bond donors/acceptors
hbd = Descriptors.NumHDonors(mol)
hba = Descriptors.NumHAcceptors(mol)
# Number of rotatable bonds
rot_bonds = Descriptors.NumRotatableBonds(mol)
# Number of aromatic rings
aromatic_rings = Descriptors.NumAromaticRings(mol)
```
**Batch Descriptor Calculation:**
```python
# Calculate all descriptors at once
all_descriptors = Descriptors.CalcMolDescriptors(mol)
# Returns dictionary: {'MolWt': 180.16, 'MolLogP': 1.23, ...}
# Get list of available descriptor names
descriptor_names = [desc[0] for desc in Descriptors._descList]
```
**Lipinski's Rule of Five:**
```python
# Check drug-likeness
mw = Descriptors.MolWt(mol) <= 500
logp = Descriptors.MolLogP(mol) <= 5
hbd = Descriptors.NumHDonors(mol) <= 5
hba = Descriptors.NumHAcceptors(mol) <= 10
is_drug_like = mw and logp and hbd and hba
```
### 5. Fingerprints and Molecular Similarity
**Fingerprint Types:**
```python
from rdkit.Chem import AllChem, RDKFingerprint
from rdkit.Chem.AtomPairs import Pairs, Torsions
from rdkit.Chem import MACCSkeys
# RDKit topological fingerprint
fp = Chem.RDKFingerprint(mol)
# Morgan fingerprints (circular fingerprints, similar to ECFP)
fp = AllChem.GetMorganFingerprint(mol, radius=2)
fp_bits = AllChem.GetMorganFingerprintAsBitVect(mol, radius=2, nBits=2048)
# MACCS keys (166-bit structural key)
fp = MACCSkeys.GenMACCSKeys(mol)
# Atom pair fingerprints
fp = Pairs.GetAtomPairFingerprint(mol)
# Topological torsion fingerprints
fp = Torsions.GetTopologicalTorsionFingerprint(mol)
# Avalon fingerprints (if available)
from rdkit.Avalon import pyAvalonTools
fp = pyAvalonTools.GetAvalonFP(mol)
```
**Similarity Calculation:**
```python
from rdkit import DataStructs
# Calculate Tanimoto similarity
fp1 = AllChem.GetMorganFingerprintAsBitVect(mol1, radius=2)
fp2 = AllChem.GetMorganFingerprintAsBitVect(mol2, radius=2)
similarity = DataStructs.TanimotoSimilarity(fp1, fp2)
# Calculate similarity for multiple molecules
similarities = DataStructs.BulkTanimotoSimilarity(fp1, [fp2, fp3, fp4])
# Other similarity metrics
dice = DataStructs.DiceSimilarity(fp1, fp2)
cosine = DataStructs.CosineSimilarity(fp1, fp2)
```
**Clustering and Diversity:**
```python
# Butina clustering based on fingerprint similarity
from rdkit.ML.Cluster import Butina
# Calculate distance matrix
dists = []
fps = [AllChem.GetMorganFingerprintAsBitVect(mol, 2) for mol in mols]
for i in range(len(fps)):
sims = DataStructs.BulkTanimotoSimilarity(fps[i], fps[:i])
dists.extend([1-sim for sim in sims])
# Cluster with distance cutoff
clusters = Butina.ClusterData(dists, len(fps), distThresh=0.3, isDistData=True)
```
### 6. Substructure Searching and SMARTS
**Basic Substructure Matching:**
```python
# Define query using SMARTS
query = Chem.MolFromSmarts('[#6]1:[#6]:[#6]:[#6]:[#6]:[#6]:1') # Benzene ring
# Check if molecule contains substructure
has_match = mol.HasSubstructMatch(query)
# Get all matches (returns tuple of tuples with atom indices)
matches = mol.GetSubstructMatches(query)
# Get only first match
match = mol.GetSubstructMatch(query)
```
**Common SMARTS Patterns:**
```python
# Primary alcohols
primary_alcohol = Chem.MolFromSmarts('[CH2][OH1]')
# Carboxylic acids
carboxylic_acid = Chem.MolFromSmarts('C(=O)[OH]')
# Amides
amide = Chem.MolFromSmarts('C(=O)N')
# Aromatic heterocycles
aromatic_n = Chem.MolFromSmarts('[nR]') # Aromatic nitrogen in ring
# Macrocycles (rings > 12 atoms)
macrocycle = Chem.MolFromSmarts('[r{12-}]')
```
**Matching Rules:**
- Unspecified properties in query match any value in target
- Hydrogens are ignored unless explicitly specified
- Charged query atom won't match uncharged target atom
- Aromatic query atom won't match aliphatic target atom (unless query is generic)
### 7. Chemical Reactions
**Reaction SMARTS:**
```python
from rdkit.Chem import AllChem
# Define reaction using SMARTS: reactants >> products
rxn = AllChem.ReactionFromSmarts('[C:1]=[O:2]>>[C:1][O:2]') # Ketone reduction
# Apply reaction to molecules
reactants = (mol1,)
products = rxn.RunReactants(reactants)
# Products is tuple of tuples (one tuple per product set)
for product_set in products:
for product in product_set:
# Sanitize product
Chem.SanitizeMol(product)
```
**Reaction Features:**
- Atom mapping preserves specific atoms between reactants and products
- Dummy atoms in products are replaced by corresponding reactant atoms
- "Any" bonds inherit bond order from reactants
- Chirality preserved unless explicitly changed
**Reaction Similarity:**
```python
# Generate reaction fingerprints
fp = AllChem.CreateDifferenceFingerprintForReaction(rxn)
# Compare reactions
similarity = DataStructs.TanimotoSimilarity(fp1, fp2)
```
### 8. 2D and 3D Coordinate Generation
**2D Coordinate Generation:**
```python
from rdkit.Chem import AllChem
# Generate 2D coordinates for depiction
AllChem.Compute2DCoords(mol)
# Align molecule to template structure
template = Chem.MolFromSmiles('c1ccccc1')
AllChem.Compute2DCoords(template)
AllChem.GenerateDepictionMatching2DStructure(mol, template)
```
**3D Coordinate Generation and Conformers:**
```python
# Generate single 3D conformer using ETKDG
AllChem.EmbedMolecule(mol, randomSeed=42)
# Generate multiple conformers
conf_ids = AllChem.EmbedMultipleConfs(mol, numConfs=10, randomSeed=42)
# Optimize geometry with force field
AllChem.UFFOptimizeMolecule(mol) # UFF force field
AllChem.MMFFOptimizeMolecule(mol) # MMFF94 force field
# Optimize all conformers
for conf_id in conf_ids:
AllChem.MMFFOptimizeMolecule(mol, confId=conf_id)
# Calculate RMSD between conformers
from rdkit.Chem import AllChem
rms = AllChem.GetConformerRMS(mol, conf_id1, conf_id2)
# Align molecules
AllChem.AlignMol(probe_mol, ref_mol)
```
**Constrained Embedding:**
```python
# Embed with part of molecule constrained to specific coordinates
AllChem.ConstrainedEmbed(mol, core_mol)
```
### 9. Molecular Visualization
**Basic Drawing:**
```python
from rdkit.Chem import Draw
# Draw single molecule to PIL image
img = Draw.MolToImage(mol, size=(300, 300))
img.save('molecule.png')
# Draw to file directly
Draw.MolToFile(mol, 'molecule.png')
# Draw multiple molecules in grid
mols = [mol1, mol2, mol3, mol4]
img = Draw.MolsToGridImage(mols, molsPerRow=2, subImgSize=(200, 200))
```
**Highlighting Substructures:**
```python
# Highlight substructure match
query = Chem.MolFromSmarts('c1ccccc1')
match = mol.GetSubstructMatch(query)
img = Draw.MolToImage(mol, highlightAtoms=match)
# Custom highlight colors
highlight_colors = {atom_idx: (1, 0, 0) for atom_idx in match} # Red
img = Draw.MolToImage(mol, highlightAtoms=match,
highlightAtomColors=highlight_colors)
```
**Customizing Visualization:**
```python
from rdkit.Chem.Draw import rdMolDraw2D
# Create drawer with custom options
drawer = rdMolDraw2D.MolDraw2DCairo(300, 300)
opts = drawer.drawOptions()
# Customize options
opts.addAtomIndices = True
opts.addStereoAnnotation = True
opts.bondLineWidth = 2
# Draw molecule
drawer.DrawMolecule(mol)
drawer.FinishDrawing()
# Save to file
with open('molecule.png', 'wb') as f:
f.write(drawer.GetDrawingText())
```
**Jupyter Notebook Integration:**
```python
# Enable inline display in Jupyter
from rdkit.Chem.Draw import IPythonConsole
# Customize default display
IPythonConsole.ipython_useSVG = True # Use SVG instead of PNG
IPythonConsole.molSize = (300, 300) # Default size
# Molecules now display automatically
mol # Shows molecule image
```
**Visualizing Fingerprint Bits:**
```python
# Show what molecular features a fingerprint bit represents
from rdkit.Chem import Draw
# For Morgan fingerprints
bit_info = {}
fp = AllChem.GetMorganFingerprintAsBitVect(mol, radius=2, bitInfo=bit_info)
# Draw environment for specific bit
img = Draw.DrawMorganBit(mol, bit_id, bit_info)
```
### 10. Molecular Modification
**Adding/Removing Hydrogens:**
```python
# Add explicit hydrogens
mol_h = Chem.AddHs(mol)
# Remove explicit hydrogens
mol = Chem.RemoveHs(mol_h)
```
**Kekulization and Aromaticity:**
```python
# Convert aromatic bonds to alternating single/double
Chem.Kekulize(mol)
# Set aromaticity
Chem.SetAromaticity(mol)
```
**Replacing Substructures:**
```python
# Replace substructure with another structure
query = Chem.MolFromSmarts('c1ccccc1') # Benzene
replacement = Chem.MolFromSmiles('C1CCCCC1') # Cyclohexane
new_mol = Chem.ReplaceSubstructs(mol, query, replacement)[0]
```
**Neutralizing Charges:**
```python
# Remove formal charges by adding/removing hydrogens
from rdkit.Chem.MolStandardize import rdMolStandardize
# Using Uncharger
uncharger = rdMolStandardize.Uncharger()
mol_neutral = uncharger.uncharge(mol)
```
### 11. Working with Molecular Hashes and Standardization
**Molecular Hashing:**
```python
from rdkit.Chem import rdMolHash
# Generate Murcko scaffold hash
scaffold_hash = rdMolHash.MolHash(mol, rdMolHash.HashFunction.MurckoScaffold)
# Canonical SMILES hash
canonical_hash = rdMolHash.MolHash(mol, rdMolHash.HashFunction.CanonicalSmiles)
# Regioisomer hash (ignores stereochemistry)
regio_hash = rdMolHash.MolHash(mol, rdMolHash.HashFunction.Regioisomer)
```
**Randomized SMILES:**
```python
# Generate random SMILES representations (for data augmentation)
from rdkit.Chem import MolToRandomSmilesVect
random_smiles = MolToRandomSmilesVect(mol, numSmiles=10, randomSeed=42)
```
### 12. Pharmacophore and 3D Features
**Pharmacophore Features:**
```python
from rdkit.Chem import ChemicalFeatures
from rdkit import RDConfig
import os
# Load feature factory
fdef_path = os.path.join(RDConfig.RDDataDir, 'BaseFeatures.fdef')
factory = ChemicalFeatures.BuildFeatureFactory(fdef_path)
# Get pharmacophore features
features = factory.GetFeaturesForMol(mol)
for feat in features:
print(feat.GetFamily(), feat.GetType(), feat.GetAtomIds())
```
## Common Workflows
### Drug-likeness Analysis
```python
from rdkit import Chem
from rdkit.Chem import Descriptors
def analyze_druglikeness(smiles):
mol = Chem.MolFromSmiles(smiles)
if mol is None:
return None
# Calculate Lipinski descriptors
results = {
'MW': Descriptors.MolWt(mol),
'LogP': Descriptors.MolLogP(mol),
'HBD': Descriptors.NumHDonors(mol),
'HBA': Descriptors.NumHAcceptors(mol),
'TPSA': Descriptors.TPSA(mol),
'RotBonds': Descriptors.NumRotatableBonds(mol)
}
# Check Lipinski's Rule of Five
results['Lipinski'] = (
results['MW'] <= 500 and
results['LogP'] <= 5 and
results['HBD'] <= 5 and
results['HBA'] <= 10
)
return results
```
### Similarity Screening
```python
from rdkit import Chem
from rdkit.Chem import AllChem
from rdkit import DataStructs
def similarity_screen(query_smiles, database_smiles, threshold=0.7):
query_mol = Chem.MolFromSmiles(query_smiles)
query_fp = AllChem.GetMorganFingerprintAsBitVect(query_mol, 2)
hits = []
for idx, smiles in enumerate(database_smiles):
mol = Chem.MolFromSmiles(smiles)
if mol:
fp = AllChem.GetMorganFingerprintAsBitVect(mol, 2)
sim = DataStructs.TanimotoSimilarity(query_fp, fp)
if sim >= threshold:
hits.append((idx, smiles, sim))
return sorted(hits, key=lambda x: x[2], reverse=True)
```
### Substructure Filtering
```python
from rdkit import Chem
def filter_by_substructure(smiles_list, pattern_smarts):
query = Chem.MolFromSmarts(pattern_smarts)
hits = []
for smiles in smiles_list:
mol = Chem.MolFromSmiles(smiles)
if mol and mol.HasSubstructMatch(query):
hits.append(smiles)
return hits
```
## Best Practices
### Error Handling
Always check for `None` when parsing molecules:
```python
mol = Chem.MolFromSmiles(smiles)
if mol is None:
print(f"Failed to parse: {smiles}")
continue
```
### Performance Optimization
**Use binary formats for storage:**
```python
import pickle
# Pickle molecules for fast loading
with open('molecules.pkl', 'wb') as f:
pickle.dump(mols, f)
# Load pickled molecules (much faster than reparsing)
with open('molecules.pkl', 'rb') as f:
mols = pickle.load(f)
```
**Use bulk operations:**
```python
# Calculate fingerprints for all molecules at once
fps = [AllChem.GetMorganFingerprintAsBitVect(mol, 2) for mol in mols]
# Use bulk similarity calculations
similarities = DataStructs.BulkTanimotoSimilarity(fps[0], fps[1:])
```
### Thread Safety
RDKit operations are generally thread-safe for:
- Molecule I/O (SMILES, mol blocks)
- Coordinate generation
- Fingerprinting and descriptors
- Substructure searching
- Reactions
- Drawing
**Not thread-safe:** MolSuppliers when accessed concurrently.
### Memory Management
For large datasets:
```python
# Use ForwardSDMolSupplier to avoid loading entire file
with open('large.sdf') as f:
suppl = Chem.ForwardSDMolSupplier(f)
for mol in suppl:
# Process one molecule at a time
pass
# Use MultithreadedSDMolSupplier for parallel processing
suppl = Chem.MultithreadedSDMolSupplier('large.sdf', numWriterThreads=4)
```
## Common Pitfalls
1. **Forgetting to check for None:** Always validate molecules after parsing
2. **Sanitization failures:** Use `DetectChemistryProblems()` to debug
3. **Missing hydrogens:** Use `AddHs()` when calculating properties that depend on hydrogen
4. **2D vs 3D:** Generate appropriate coordinates before visualization or 3D analysis
5. **SMARTS matching rules:** Remember that unspecified properties match anything
6. **Thread safety with MolSuppliers:** Don't share supplier objects across threads
## Resources
### references/
This skill includes detailed API reference documentation:
- `api_reference.md` - Comprehensive listing of RDKit modules, functions, and classes organized by functionality
- `descriptors_reference.md` - Complete list of available molecular descriptors with descriptions
- `smarts_patterns.md` - Common SMARTS patterns for functional groups and structural features
Load these references when needing specific API details, parameter information, or pattern examples.
### scripts/
Example scripts for common RDKit workflows:
- `molecular_properties.py` - Calculate comprehensive molecular properties and descriptors
- `similarity_search.py` - Perform fingerprint-based similarity screening
- `substructure_filter.py` - Filter molecules by substructure patterns
These scripts can be executed directly or used as templates for custom workflows.

View File

@@ -0,0 +1,432 @@
# RDKit API Reference
This document provides a comprehensive reference for RDKit's Python API, organized by functionality.
## Core Module: rdkit.Chem
The fundamental module for working with molecules.
### Molecule I/O
**Reading Molecules:**
- `Chem.MolFromSmiles(smiles, sanitize=True)` - Parse SMILES string
- `Chem.MolFromSmarts(smarts)` - Parse SMARTS pattern
- `Chem.MolFromMolFile(filename, sanitize=True, removeHs=True)` - Read MOL file
- `Chem.MolFromMolBlock(molblock, sanitize=True, removeHs=True)` - Parse MOL block string
- `Chem.MolFromMol2File(filename, sanitize=True, removeHs=True)` - Read MOL2 file
- `Chem.MolFromMol2Block(molblock, sanitize=True, removeHs=True)` - Parse MOL2 block
- `Chem.MolFromPDBFile(filename, sanitize=True, removeHs=True)` - Read PDB file
- `Chem.MolFromPDBBlock(pdbblock, sanitize=True, removeHs=True)` - Parse PDB block
- `Chem.MolFromInchi(inchi, sanitize=True, removeHs=True)` - Parse InChI string
- `Chem.MolFromSequence(seq, sanitize=True)` - Create molecule from peptide sequence
**Writing Molecules:**
- `Chem.MolToSmiles(mol, isomericSmiles=True, canonical=True)` - Convert to SMILES
- `Chem.MolToSmarts(mol, isomericSmarts=False)` - Convert to SMARTS
- `Chem.MolToMolBlock(mol, includeStereo=True, confId=-1)` - Convert to MOL block
- `Chem.MolToMolFile(mol, filename, includeStereo=True, confId=-1)` - Write MOL file
- `Chem.MolToPDBBlock(mol, confId=-1)` - Convert to PDB block
- `Chem.MolToPDBFile(mol, filename, confId=-1)` - Write PDB file
- `Chem.MolToInchi(mol, options='')` - Convert to InChI
- `Chem.MolToInchiKey(mol, options='')` - Generate InChI key
- `Chem.MolToSequence(mol)` - Convert to peptide sequence
**Batch I/O:**
- `Chem.SDMolSupplier(filename, sanitize=True, removeHs=True)` - SDF file reader
- `Chem.ForwardSDMolSupplier(fileobj, sanitize=True, removeHs=True)` - Forward-only SDF reader
- `Chem.MultithreadedSDMolSupplier(filename, numWriterThreads=1)` - Parallel SDF reader
- `Chem.SmilesMolSupplier(filename, delimiter=' ', titleLine=True)` - SMILES file reader
- `Chem.SDWriter(filename)` - SDF file writer
- `Chem.SmilesWriter(filename, delimiter=' ', includeHeader=True)` - SMILES file writer
### Molecular Manipulation
**Sanitization:**
- `Chem.SanitizeMol(mol, sanitizeOps=SANITIZE_ALL, catchErrors=False)` - Sanitize molecule
- `Chem.DetectChemistryProblems(mol, sanitizeOps=SANITIZE_ALL)` - Detect sanitization issues
- `Chem.AssignStereochemistry(mol, cleanIt=True, force=False)` - Assign stereochemistry
- `Chem.FindPotentialStereo(mol)` - Find potential stereocenters
- `Chem.AssignStereochemistryFrom3D(mol, confId=-1)` - Assign stereo from 3D coords
**Hydrogen Management:**
- `Chem.AddHs(mol, explicitOnly=False, addCoords=False)` - Add explicit hydrogens
- `Chem.RemoveHs(mol, implicitOnly=False, updateExplicitCount=False)` - Remove hydrogens
- `Chem.RemoveAllHs(mol)` - Remove all hydrogens
**Aromaticity:**
- `Chem.SetAromaticity(mol, model=AROMATICITY_RDKIT)` - Set aromaticity model
- `Chem.Kekulize(mol, clearAromaticFlags=False)` - Kekulize aromatic bonds
- `Chem.SetConjugation(mol)` - Set conjugation flags
**Fragments:**
- `Chem.GetMolFrags(mol, asMols=False, sanitizeFrags=True)` - Get disconnected fragments
- `Chem.FragmentOnBonds(mol, bondIndices, addDummies=True)` - Fragment on specific bonds
- `Chem.ReplaceSubstructs(mol, query, replacement, replaceAll=False)` - Replace substructures
- `Chem.DeleteSubstructs(mol, query, onlyFrags=False)` - Delete substructures
**Stereochemistry:**
- `Chem.FindMolChiralCenters(mol, includeUnassigned=False, useLegacyImplementation=False)` - Find chiral centers
- `Chem.FindPotentialStereo(mol, cleanIt=True)` - Find potential stereocenters
### Substructure Searching
**Basic Matching:**
- `mol.HasSubstructMatch(query, useChirality=False)` - Check for substructure match
- `mol.GetSubstructMatch(query, useChirality=False)` - Get first match
- `mol.GetSubstructMatches(query, uniquify=True, useChirality=False)` - Get all matches
- `mol.GetSubstructMatches(query, maxMatches=1000)` - Limit number of matches
### Molecular Properties
**Atom Methods:**
- `atom.GetSymbol()` - Atomic symbol
- `atom.GetAtomicNum()` - Atomic number
- `atom.GetDegree()` - Number of bonds
- `atom.GetTotalDegree()` - Including hydrogens
- `atom.GetFormalCharge()` - Formal charge
- `atom.GetNumRadicalElectrons()` - Radical electrons
- `atom.GetIsAromatic()` - Aromaticity flag
- `atom.GetHybridization()` - Hybridization (SP, SP2, SP3, etc.)
- `atom.GetIdx()` - Atom index
- `atom.IsInRing()` - In any ring
- `atom.IsInRingSize(size)` - In ring of specific size
- `atom.GetChiralTag()` - Chirality tag
**Bond Methods:**
- `bond.GetBondType()` - Bond type (SINGLE, DOUBLE, TRIPLE, AROMATIC)
- `bond.GetBeginAtomIdx()` - Starting atom index
- `bond.GetEndAtomIdx()` - Ending atom index
- `bond.GetIsConjugated()` - Conjugation flag
- `bond.GetIsAromatic()` - Aromaticity flag
- `bond.IsInRing()` - In any ring
- `bond.GetStereo()` - Stereochemistry (STEREONONE, STEREOZ, STEREOE, etc.)
**Molecule Methods:**
- `mol.GetNumAtoms(onlyExplicit=True)` - Number of atoms
- `mol.GetNumHeavyAtoms()` - Number of heavy atoms
- `mol.GetNumBonds()` - Number of bonds
- `mol.GetAtoms()` - Iterator over atoms
- `mol.GetBonds()` - Iterator over bonds
- `mol.GetAtomWithIdx(idx)` - Get specific atom
- `mol.GetBondWithIdx(idx)` - Get specific bond
- `mol.GetRingInfo()` - Ring information object
**Ring Information:**
- `Chem.GetSymmSSSR(mol)` - Get smallest set of smallest rings
- `Chem.GetSSSR(mol)` - Alias for GetSymmSSSR
- `ring_info.NumRings()` - Number of rings
- `ring_info.AtomRings()` - Tuples of atom indices in rings
- `ring_info.BondRings()` - Tuples of bond indices in rings
## rdkit.Chem.AllChem
Extended chemistry functionality.
### 2D/3D Coordinate Generation
- `AllChem.Compute2DCoords(mol, canonOrient=True, clearConfs=True)` - Generate 2D coordinates
- `AllChem.EmbedMolecule(mol, maxAttempts=0, randomSeed=-1, useRandomCoords=False)` - Generate 3D conformer
- `AllChem.EmbedMultipleConfs(mol, numConfs=10, maxAttempts=0, randomSeed=-1)` - Generate multiple conformers
- `AllChem.ConstrainedEmbed(mol, core, useTethers=True)` - Constrained embedding
- `AllChem.GenerateDepictionMatching2DStructure(mol, reference, refPattern=None)` - Align to template
### Force Field Optimization
- `AllChem.UFFOptimizeMolecule(mol, maxIters=200, confId=-1)` - UFF optimization
- `AllChem.MMFFOptimizeMolecule(mol, maxIters=200, confId=-1, mmffVariant='MMFF94')` - MMFF optimization
- `AllChem.UFFGetMoleculeForceField(mol, confId=-1)` - Get UFF force field object
- `AllChem.MMFFGetMoleculeForceField(mol, pyMMFFMolProperties, confId=-1)` - Get MMFF force field
### Conformer Analysis
- `AllChem.GetConformerRMS(mol, confId1, confId2, prealigned=False)` - Calculate RMSD
- `AllChem.GetConformerRMSMatrix(mol, prealigned=False)` - RMSD matrix
- `AllChem.AlignMol(prbMol, refMol, prbCid=-1, refCid=-1)` - Align molecules
- `AllChem.AlignMolConformers(mol)` - Align all conformers
### Reactions
- `AllChem.ReactionFromSmarts(smarts, useSmiles=False)` - Create reaction from SMARTS
- `reaction.RunReactants(reactants)` - Apply reaction
- `reaction.RunReactant(reactant, reactionIdx)` - Apply to specific reactant
- `AllChem.CreateDifferenceFingerprintForReaction(reaction)` - Reaction fingerprint
### Fingerprints
- `AllChem.GetMorganFingerprint(mol, radius, useFeatures=False)` - Morgan fingerprint
- `AllChem.GetMorganFingerprintAsBitVect(mol, radius, nBits=2048)` - Morgan bit vector
- `AllChem.GetHashedMorganFingerprint(mol, radius, nBits=2048)` - Hashed Morgan
- `AllChem.GetErGFingerprint(mol)` - ErG fingerprint
## rdkit.Chem.Descriptors
Molecular descriptor calculations.
### Common Descriptors
- `Descriptors.MolWt(mol)` - Molecular weight
- `Descriptors.ExactMolWt(mol)` - Exact molecular weight
- `Descriptors.HeavyAtomMolWt(mol)` - Heavy atom molecular weight
- `Descriptors.MolLogP(mol)` - LogP (lipophilicity)
- `Descriptors.MolMR(mol)` - Molar refractivity
- `Descriptors.TPSA(mol)` - Topological polar surface area
- `Descriptors.NumHDonors(mol)` - Hydrogen bond donors
- `Descriptors.NumHAcceptors(mol)` - Hydrogen bond acceptors
- `Descriptors.NumRotatableBonds(mol)` - Rotatable bonds
- `Descriptors.NumAromaticRings(mol)` - Aromatic rings
- `Descriptors.NumSaturatedRings(mol)` - Saturated rings
- `Descriptors.NumAliphaticRings(mol)` - Aliphatic rings
- `Descriptors.NumAromaticHeterocycles(mol)` - Aromatic heterocycles
- `Descriptors.NumRadicalElectrons(mol)` - Radical electrons
- `Descriptors.NumValenceElectrons(mol)` - Valence electrons
### Batch Calculation
- `Descriptors.CalcMolDescriptors(mol)` - Calculate all descriptors as dictionary
### Descriptor Lists
- `Descriptors._descList` - List of (name, function) tuples for all descriptors
## rdkit.Chem.Draw
Molecular visualization.
### Image Generation
- `Draw.MolToImage(mol, size=(300,300), kekulize=True, wedgeBonds=True, highlightAtoms=None)` - Generate PIL image
- `Draw.MolToFile(mol, filename, size=(300,300), kekulize=True, wedgeBonds=True)` - Save to file
- `Draw.MolsToGridImage(mols, molsPerRow=3, subImgSize=(200,200), legends=None)` - Grid of molecules
- `Draw.MolsMatrixToGridImage(mols, molsPerRow=3, subImgSize=(200,200), legends=None)` - Nested grid
- `Draw.ReactionToImage(rxn, subImgSize=(200,200))` - Reaction image
### Fingerprint Visualization
- `Draw.DrawMorganBit(mol, bitId, bitInfo, whichExample=0)` - Visualize Morgan bit
- `Draw.DrawMorganBits(bits, mol, bitInfo, molsPerRow=3)` - Multiple Morgan bits
- `Draw.DrawRDKitBit(mol, bitId, bitInfo, whichExample=0)` - Visualize RDKit bit
### IPython Integration
- `Draw.IPythonConsole` - Module for Jupyter integration
- `Draw.IPythonConsole.ipython_useSVG` - Use SVG (True) or PNG (False)
- `Draw.IPythonConsole.molSize` - Default molecule image size
### Drawing Options
- `rdMolDraw2D.MolDrawOptions()` - Get drawing options object
- `.addAtomIndices` - Show atom indices
- `.addBondIndices` - Show bond indices
- `.addStereoAnnotation` - Show stereochemistry
- `.bondLineWidth` - Line width
- `.highlightBondWidthMultiplier` - Highlight width
- `.minFontSize` - Minimum font size
- `.maxFontSize` - Maximum font size
## rdkit.Chem.rdMolDescriptors
Additional descriptor calculations.
- `rdMolDescriptors.CalcNumRings(mol)` - Number of rings
- `rdMolDescriptors.CalcNumAromaticRings(mol)` - Aromatic rings
- `rdMolDescriptors.CalcNumAliphaticRings(mol)` - Aliphatic rings
- `rdMolDescriptors.CalcNumSaturatedRings(mol)` - Saturated rings
- `rdMolDescriptors.CalcNumHeterocycles(mol)` - Heterocycles
- `rdMolDescriptors.CalcNumAromaticHeterocycles(mol)` - Aromatic heterocycles
- `rdMolDescriptors.CalcNumSpiroAtoms(mol)` - Spiro atoms
- `rdMolDescriptors.CalcNumBridgeheadAtoms(mol)` - Bridgehead atoms
- `rdMolDescriptors.CalcFractionCsp3(mol)` - Fraction of sp3 carbons
- `rdMolDescriptors.CalcLabuteASA(mol)` - Labute accessible surface area
- `rdMolDescriptors.CalcTPSA(mol)` - TPSA
- `rdMolDescriptors.CalcMolFormula(mol)` - Molecular formula
## rdkit.Chem.Scaffolds
Scaffold analysis.
### Murcko Scaffolds
- `MurckoScaffold.GetScaffoldForMol(mol)` - Get Murcko scaffold
- `MurckoScaffold.MakeScaffoldGeneric(mol)` - Generic scaffold
- `MurckoScaffold.MurckoDecompose(mol)` - Decompose to scaffold and sidechains
## rdkit.Chem.rdMolHash
Molecular hashing and standardization.
- `rdMolHash.MolHash(mol, hashFunction)` - Generate hash
- `rdMolHash.HashFunction.AnonymousGraph` - Anonymized structure
- `rdMolHash.HashFunction.CanonicalSmiles` - Canonical SMILES
- `rdMolHash.HashFunction.ElementGraph` - Element graph
- `rdMolHash.HashFunction.MurckoScaffold` - Murcko scaffold
- `rdMolHash.HashFunction.Regioisomer` - Regioisomer (no stereo)
- `rdMolHash.HashFunction.NetCharge` - Net charge
- `rdMolHash.HashFunction.HetAtomProtomer` - Heteroatom protomer
- `rdMolHash.HashFunction.HetAtomTautomer` - Heteroatom tautomer
## rdkit.Chem.MolStandardize
Molecule standardization.
- `rdMolStandardize.Normalize(mol)` - Normalize functional groups
- `rdMolStandardize.Reionize(mol)` - Fix ionization state
- `rdMolStandardize.RemoveFragments(mol)` - Remove small fragments
- `rdMolStandardize.Cleanup(mol)` - Full cleanup (normalize + reionize + remove)
- `rdMolStandardize.Uncharger()` - Create uncharger object
- `.uncharge(mol)` - Remove charges
- `rdMolStandardize.TautomerEnumerator()` - Enumerate tautomers
- `.Enumerate(mol)` - Generate tautomers
- `.Canonicalize(mol)` - Get canonical tautomer
## rdkit.DataStructs
Fingerprint similarity and operations.
### Similarity Metrics
- `DataStructs.TanimotoSimilarity(fp1, fp2)` - Tanimoto coefficient
- `DataStructs.DiceSimilarity(fp1, fp2)` - Dice coefficient
- `DataStructs.CosineSimilarity(fp1, fp2)` - Cosine similarity
- `DataStructs.SokalSimilarity(fp1, fp2)` - Sokal similarity
- `DataStructs.KulczynskiSimilarity(fp1, fp2)` - Kulczynski similarity
- `DataStructs.McConnaugheySimilarity(fp1, fp2)` - McConnaughey similarity
### Bulk Operations
- `DataStructs.BulkTanimotoSimilarity(fp, fps)` - Tanimoto for list of fingerprints
- `DataStructs.BulkDiceSimilarity(fp, fps)` - Dice for list
- `DataStructs.BulkCosineSimilarity(fp, fps)` - Cosine for list
### Distance Metrics
- `DataStructs.TanimotoDistance(fp1, fp2)` - 1 - Tanimoto
- `DataStructs.DiceDistance(fp1, fp2)` - 1 - Dice
## rdkit.Chem.AtomPairs
Atom pair fingerprints.
- `Pairs.GetAtomPairFingerprint(mol, minLength=1, maxLength=30)` - Atom pair fingerprint
- `Pairs.GetAtomPairFingerprintAsBitVect(mol, minLength=1, maxLength=30, nBits=2048)` - As bit vector
- `Pairs.GetHashedAtomPairFingerprint(mol, nBits=2048, minLength=1, maxLength=30)` - Hashed version
## rdkit.Chem.Torsions
Topological torsion fingerprints.
- `Torsions.GetTopologicalTorsionFingerprint(mol, targetSize=4)` - Torsion fingerprint
- `Torsions.GetTopologicalTorsionFingerprintAsIntVect(mol, targetSize=4)` - As int vector
- `Torsions.GetHashedTopologicalTorsionFingerprint(mol, nBits=2048, targetSize=4)` - Hashed version
## rdkit.Chem.MACCSkeys
MACCS structural keys.
- `MACCSkeys.GenMACCSKeys(mol)` - Generate 166-bit MACCS keys
## rdkit.Chem.ChemicalFeatures
Pharmacophore features.
- `ChemicalFeatures.BuildFeatureFactory(featureFile)` - Create feature factory
- `factory.GetFeaturesForMol(mol)` - Get pharmacophore features
- `feature.GetFamily()` - Feature family (Donor, Acceptor, etc.)
- `feature.GetType()` - Feature type
- `feature.GetAtomIds()` - Atoms involved in feature
## rdkit.ML.Cluster.Butina
Clustering algorithms.
- `Butina.ClusterData(distances, nPts, distThresh, isDistData=True)` - Butina clustering
- Returns tuple of tuples with cluster members
## rdkit.Chem.rdFingerprintGenerator
Modern fingerprint generation API (RDKit 2020.09+).
- `rdFingerprintGenerator.GetMorganGenerator(radius=2, fpSize=2048)` - Morgan generator
- `rdFingerprintGenerator.GetRDKitFPGenerator(minPath=1, maxPath=7, fpSize=2048)` - RDKit FP generator
- `rdFingerprintGenerator.GetAtomPairGenerator(minDistance=1, maxDistance=30)` - Atom pair generator
- `generator.GetFingerprint(mol)` - Generate fingerprint
- `generator.GetCountFingerprint(mol)` - Count-based fingerprint
## Common Parameters
### Sanitization Operations
- `SANITIZE_NONE` - No sanitization
- `SANITIZE_ALL` - All operations (default)
- `SANITIZE_CLEANUP` - Basic cleanup
- `SANITIZE_PROPERTIES` - Calculate properties
- `SANITIZE_SYMMRINGS` - Symmetrize rings
- `SANITIZE_KEKULIZE` - Kekulize aromatic rings
- `SANITIZE_FINDRADICALS` - Find radical electrons
- `SANITIZE_SETAROMATICITY` - Set aromaticity
- `SANITIZE_SETCONJUGATION` - Set conjugation
- `SANITIZE_SETHYBRIDIZATION` - Set hybridization
- `SANITIZE_CLEANUPCHIRALITY` - Cleanup chirality
### Bond Types
- `BondType.SINGLE` - Single bond
- `BondType.DOUBLE` - Double bond
- `BondType.TRIPLE` - Triple bond
- `BondType.AROMATIC` - Aromatic bond
- `BondType.DATIVE` - Dative bond
- `BondType.UNSPECIFIED` - Unspecified
### Hybridization
- `HybridizationType.S` - S
- `HybridizationType.SP` - SP
- `HybridizationType.SP2` - SP2
- `HybridizationType.SP3` - SP3
- `HybridizationType.SP3D` - SP3D
- `HybridizationType.SP3D2` - SP3D2
### Chirality
- `ChiralType.CHI_UNSPECIFIED` - Unspecified
- `ChiralType.CHI_TETRAHEDRAL_CW` - Clockwise
- `ChiralType.CHI_TETRAHEDRAL_CCW` - Counter-clockwise
## Installation
```bash
# Using conda (recommended)
conda install -c conda-forge rdkit
# Using pip
pip install rdkit-pypi
```
## Importing
```python
# Core functionality
from rdkit import Chem
from rdkit.Chem import AllChem
# Descriptors
from rdkit.Chem import Descriptors
# Drawing
from rdkit.Chem import Draw
# Similarity
from rdkit import DataStructs
```

View File

@@ -0,0 +1,595 @@
# RDKit Molecular Descriptors Reference
Complete reference for molecular descriptors available in RDKit's `Descriptors` module.
## Usage
```python
from rdkit import Chem
from rdkit.Chem import Descriptors
mol = Chem.MolFromSmiles('CCO')
# Calculate individual descriptor
mw = Descriptors.MolWt(mol)
# Calculate all descriptors at once
all_desc = Descriptors.CalcMolDescriptors(mol)
```
## Molecular Weight and Mass
### MolWt
Average molecular weight of the molecule.
```python
Descriptors.MolWt(mol)
```
### ExactMolWt
Exact molecular weight using isotopic composition.
```python
Descriptors.ExactMolWt(mol)
```
### HeavyAtomMolWt
Average molecular weight ignoring hydrogens.
```python
Descriptors.HeavyAtomMolWt(mol)
```
## Lipophilicity
### MolLogP
Wildman-Crippen LogP (octanol-water partition coefficient).
```python
Descriptors.MolLogP(mol)
```
### MolMR
Wildman-Crippen molar refractivity.
```python
Descriptors.MolMR(mol)
```
## Polar Surface Area
### TPSA
Topological polar surface area (TPSA) based on fragment contributions.
```python
Descriptors.TPSA(mol)
```
### LabuteASA
Labute's Approximate Surface Area (ASA).
```python
Descriptors.LabuteASA(mol)
```
## Hydrogen Bonding
### NumHDonors
Number of hydrogen bond donors (N-H and O-H).
```python
Descriptors.NumHDonors(mol)
```
### NumHAcceptors
Number of hydrogen bond acceptors (N and O).
```python
Descriptors.NumHAcceptors(mol)
```
### NOCount
Number of N and O atoms.
```python
Descriptors.NOCount(mol)
```
### NHOHCount
Number of N-H and O-H bonds.
```python
Descriptors.NHOHCount(mol)
```
## Atom Counts
### HeavyAtomCount
Number of heavy atoms (non-hydrogen).
```python
Descriptors.HeavyAtomCount(mol)
```
### NumHeteroatoms
Number of heteroatoms (non-C and non-H).
```python
Descriptors.NumHeteroatoms(mol)
```
### NumValenceElectrons
Total number of valence electrons.
```python
Descriptors.NumValenceElectrons(mol)
```
### NumRadicalElectrons
Number of radical electrons.
```python
Descriptors.NumRadicalElectrons(mol)
```
## Ring Descriptors
### RingCount
Number of rings.
```python
Descriptors.RingCount(mol)
```
### NumAromaticRings
Number of aromatic rings.
```python
Descriptors.NumAromaticRings(mol)
```
### NumSaturatedRings
Number of saturated rings.
```python
Descriptors.NumSaturatedRings(mol)
```
### NumAliphaticRings
Number of aliphatic (non-aromatic) rings.
```python
Descriptors.NumAliphaticRings(mol)
```
### NumAromaticCarbocycles
Number of aromatic carbocycles (rings with only carbons).
```python
Descriptors.NumAromaticCarbocycles(mol)
```
### NumAromaticHeterocycles
Number of aromatic heterocycles (rings with heteroatoms).
```python
Descriptors.NumAromaticHeterocycles(mol)
```
### NumSaturatedCarbocycles
Number of saturated carbocycles.
```python
Descriptors.NumSaturatedCarbocycles(mol)
```
### NumSaturatedHeterocycles
Number of saturated heterocycles.
```python
Descriptors.NumSaturatedHeterocycles(mol)
```
### NumAliphaticCarbocycles
Number of aliphatic carbocycles.
```python
Descriptors.NumAliphaticCarbocycles(mol)
```
### NumAliphaticHeterocycles
Number of aliphatic heterocycles.
```python
Descriptors.NumAliphaticHeterocycles(mol)
```
## Rotatable Bonds
### NumRotatableBonds
Number of rotatable bonds (flexibility).
```python
Descriptors.NumRotatableBonds(mol)
```
## Aromatic Atoms
### NumAromaticAtoms
Number of aromatic atoms.
```python
Descriptors.NumAromaticAtoms(mol)
```
## Fraction Descriptors
### FractionCsp3
Fraction of carbons that are sp3 hybridized.
```python
Descriptors.FractionCsp3(mol)
```
## Complexity Descriptors
### BertzCT
Bertz complexity index.
```python
Descriptors.BertzCT(mol)
```
### Ipc
Information content (complexity measure).
```python
Descriptors.Ipc(mol)
```
## Kappa Shape Indices
Molecular shape descriptors based on graph invariants.
### Kappa1
First kappa shape index.
```python
Descriptors.Kappa1(mol)
```
### Kappa2
Second kappa shape index.
```python
Descriptors.Kappa2(mol)
```
### Kappa3
Third kappa shape index.
```python
Descriptors.Kappa3(mol)
```
## Chi Connectivity Indices
Molecular connectivity indices.
### Chi0, Chi1, Chi2, Chi3, Chi4
Simple chi connectivity indices.
```python
Descriptors.Chi0(mol)
Descriptors.Chi1(mol)
Descriptors.Chi2(mol)
Descriptors.Chi3(mol)
Descriptors.Chi4(mol)
```
### Chi0n, Chi1n, Chi2n, Chi3n, Chi4n
Valence-modified chi connectivity indices.
```python
Descriptors.Chi0n(mol)
Descriptors.Chi1n(mol)
Descriptors.Chi2n(mol)
Descriptors.Chi3n(mol)
Descriptors.Chi4n(mol)
```
### Chi0v, Chi1v, Chi2v, Chi3v, Chi4v
Valence chi connectivity indices.
```python
Descriptors.Chi0v(mol)
Descriptors.Chi1v(mol)
Descriptors.Chi2v(mol)
Descriptors.Chi3v(mol)
Descriptors.Chi4v(mol)
```
## Hall-Kier Alpha
### HallKierAlpha
Hall-Kier alpha value (molecular flexibility).
```python
Descriptors.HallKierAlpha(mol)
```
## Balaban's J Index
### BalabanJ
Balaban's J index (branching descriptor).
```python
Descriptors.BalabanJ(mol)
```
## EState Indices
Electrotopological state indices.
### MaxEStateIndex
Maximum E-state value.
```python
Descriptors.MaxEStateIndex(mol)
```
### MinEStateIndex
Minimum E-state value.
```python
Descriptors.MinEStateIndex(mol)
```
### MaxAbsEStateIndex
Maximum absolute E-state value.
```python
Descriptors.MaxAbsEStateIndex(mol)
```
### MinAbsEStateIndex
Minimum absolute E-state value.
```python
Descriptors.MinAbsEStateIndex(mol)
```
## Partial Charges
### MaxPartialCharge
Maximum partial charge.
```python
Descriptors.MaxPartialCharge(mol)
```
### MinPartialCharge
Minimum partial charge.
```python
Descriptors.MinPartialCharge(mol)
```
### MaxAbsPartialCharge
Maximum absolute partial charge.
```python
Descriptors.MaxAbsPartialCharge(mol)
```
### MinAbsPartialCharge
Minimum absolute partial charge.
```python
Descriptors.MinAbsPartialCharge(mol)
```
## Fingerprint Density
Measures the density of molecular fingerprints.
### FpDensityMorgan1
Morgan fingerprint density at radius 1.
```python
Descriptors.FpDensityMorgan1(mol)
```
### FpDensityMorgan2
Morgan fingerprint density at radius 2.
```python
Descriptors.FpDensityMorgan2(mol)
```
### FpDensityMorgan3
Morgan fingerprint density at radius 3.
```python
Descriptors.FpDensityMorgan3(mol)
```
## PEOE VSA Descriptors
Partial Equalization of Orbital Electronegativities (PEOE) VSA descriptors.
### PEOE_VSA1 through PEOE_VSA14
MOE-type descriptors using partial charges and surface area contributions.
```python
Descriptors.PEOE_VSA1(mol)
# ... through PEOE_VSA14
```
## SMR VSA Descriptors
Molecular refractivity VSA descriptors.
### SMR_VSA1 through SMR_VSA10
MOE-type descriptors using MR contributions and surface area.
```python
Descriptors.SMR_VSA1(mol)
# ... through SMR_VSA10
```
## SLogP VSA Descriptors
LogP VSA descriptors.
### SLogP_VSA1 through SLogP_VSA12
MOE-type descriptors using LogP contributions and surface area.
```python
Descriptors.SLogP_VSA1(mol)
# ... through SLogP_VSA12
```
## EState VSA Descriptors
### EState_VSA1 through EState_VSA11
MOE-type descriptors using E-state indices and surface area.
```python
Descriptors.EState_VSA1(mol)
# ... through EState_VSA11
```
## VSA Descriptors
van der Waals surface area descriptors.
### VSA_EState1 through VSA_EState10
EState VSA descriptors.
```python
Descriptors.VSA_EState1(mol)
# ... through VSA_EState10
```
## BCUT Descriptors
Burden-CAS-University of Texas eigenvalue descriptors.
### BCUT2D_MWHI
Highest eigenvalue of Burden matrix weighted by molecular weight.
```python
Descriptors.BCUT2D_MWHI(mol)
```
### BCUT2D_MWLOW
Lowest eigenvalue of Burden matrix weighted by molecular weight.
```python
Descriptors.BCUT2D_MWLOW(mol)
```
### BCUT2D_CHGHI
Highest eigenvalue weighted by partial charges.
```python
Descriptors.BCUT2D_CHGHI(mol)
```
### BCUT2D_CHGLO
Lowest eigenvalue weighted by partial charges.
```python
Descriptors.BCUT2D_CHGLO(mol)
```
### BCUT2D_LOGPHI
Highest eigenvalue weighted by LogP.
```python
Descriptors.BCUT2D_LOGPHI(mol)
```
### BCUT2D_LOGPLOW
Lowest eigenvalue weighted by LogP.
```python
Descriptors.BCUT2D_LOGPLOW(mol)
```
### BCUT2D_MRHI
Highest eigenvalue weighted by molar refractivity.
```python
Descriptors.BCUT2D_MRHI(mol)
```
### BCUT2D_MRLOW
Lowest eigenvalue weighted by molar refractivity.
```python
Descriptors.BCUT2D_MRLOW(mol)
```
## Autocorrelation Descriptors
### AUTOCORR2D
2D autocorrelation descriptors (if enabled).
Various autocorrelation indices measuring spatial distribution of properties.
## MQN Descriptors
Molecular Quantum Numbers - 42 simple descriptors.
### mqn1 through mqn42
Integer descriptors counting various molecular features.
```python
# Access via CalcMolDescriptors
desc = Descriptors.CalcMolDescriptors(mol)
mqns = {k: v for k, v in desc.items() if k.startswith('mqn')}
```
## QED
### qed
Quantitative Estimate of Drug-likeness.
```python
Descriptors.qed(mol)
```
## Lipinski's Rule of Five
Check drug-likeness using Lipinski's criteria:
```python
def lipinski_rule_of_five(mol):
mw = Descriptors.MolWt(mol) <= 500
logp = Descriptors.MolLogP(mol) <= 5
hbd = Descriptors.NumHDonors(mol) <= 5
hba = Descriptors.NumHAcceptors(mol) <= 10
return mw and logp and hbd and hba
```
## Batch Descriptor Calculation
Calculate all descriptors at once:
```python
from rdkit import Chem
from rdkit.Chem import Descriptors
mol = Chem.MolFromSmiles('CCO')
# Get all descriptors as dictionary
all_descriptors = Descriptors.CalcMolDescriptors(mol)
# Access specific descriptor
mw = all_descriptors['MolWt']
logp = all_descriptors['MolLogP']
# Get list of available descriptor names
from rdkit.Chem import Descriptors
descriptor_names = [desc[0] for desc in Descriptors._descList]
```
## Descriptor Categories Summary
1. **Physicochemical**: MolWt, MolLogP, MolMR, TPSA
2. **Topological**: BertzCT, BalabanJ, Kappa indices
3. **Electronic**: Partial charges, E-state indices
4. **Shape**: Kappa indices, BCUT descriptors
5. **Connectivity**: Chi indices
6. **2D Fingerprints**: FpDensity descriptors
7. **Atom counts**: Heavy atoms, heteroatoms, rings
8. **Drug-likeness**: QED, Lipinski parameters
9. **Flexibility**: NumRotatableBonds, HallKierAlpha
10. **Surface area**: VSA-based descriptors
## Common Use Cases
### Drug-likeness Screening
```python
def screen_druglikeness(mol):
return {
'MW': Descriptors.MolWt(mol),
'LogP': Descriptors.MolLogP(mol),
'HBD': Descriptors.NumHDonors(mol),
'HBA': Descriptors.NumHAcceptors(mol),
'TPSA': Descriptors.TPSA(mol),
'RotBonds': Descriptors.NumRotatableBonds(mol),
'AromaticRings': Descriptors.NumAromaticRings(mol),
'QED': Descriptors.qed(mol)
}
```
### Lead-like Filtering
```python
def is_leadlike(mol):
mw = 250 <= Descriptors.MolWt(mol) <= 350
logp = Descriptors.MolLogP(mol) <= 3.5
rot_bonds = Descriptors.NumRotatableBonds(mol) <= 7
return mw and logp and rot_bonds
```
### Diversity Analysis
```python
def molecular_complexity(mol):
return {
'BertzCT': Descriptors.BertzCT(mol),
'NumRings': Descriptors.RingCount(mol),
'NumRotBonds': Descriptors.NumRotatableBonds(mol),
'FractionCsp3': Descriptors.FractionCsp3(mol),
'NumAromaticRings': Descriptors.NumAromaticRings(mol)
}
```
## Tips
1. **Use batch calculation** for multiple descriptors to avoid redundant computations
2. **Check for None** - some descriptors may return None for invalid molecules
3. **Normalize descriptors** for machine learning applications
4. **Select relevant descriptors** - not all 200+ descriptors are useful for every task
5. **Consider 3D descriptors** separately (require 3D coordinates)
6. **Validate ranges** - check if descriptor values are in expected ranges

View File

@@ -0,0 +1,668 @@
# Common SMARTS Patterns for RDKit
This document provides a collection of commonly used SMARTS patterns for substructure searching in RDKit.
## Functional Groups
### Alcohols
```python
# Primary alcohol
'[CH2][OH1]'
# Secondary alcohol
'[CH1]([OH1])[CH3,CH2]'
# Tertiary alcohol
'[C]([OH1])([C])([C])[C]'
# Any alcohol
'[OH1][C]'
# Phenol
'c[OH1]'
```
### Aldehydes and Ketones
```python
# Aldehyde
'[CH1](=O)'
# Ketone
'[C](=O)[C]'
# Any carbonyl
'[C](=O)'
```
### Carboxylic Acids and Derivatives
```python
# Carboxylic acid
'C(=O)[OH1]'
'[CX3](=O)[OX2H1]' # More specific
# Ester
'C(=O)O[C]'
'[CX3](=O)[OX2][C]' # More specific
# Amide
'C(=O)N'
'[CX3](=O)[NX3]' # More specific
# Acyl chloride
'C(=O)Cl'
# Anhydride
'C(=O)OC(=O)'
```
### Amines
```python
# Primary amine
'[NH2][C]'
# Secondary amine
'[NH1]([C])[C]'
# Tertiary amine
'[N]([C])([C])[C]'
# Aromatic amine (aniline)
'c[NH2]'
# Any amine
'[NX3]'
```
### Ethers
```python
# Aliphatic ether
'[C][O][C]'
# Aromatic ether
'c[O][C,c]'
```
### Halides
```python
# Alkyl halide
'[C][F,Cl,Br,I]'
# Aryl halide
'c[F,Cl,Br,I]'
# Specific halides
'[C]F' # Fluoride
'[C]Cl' # Chloride
'[C]Br' # Bromide
'[C]I' # Iodide
```
### Nitriles and Nitro Groups
```python
# Nitrile
'C#N'
# Nitro group
'[N+](=O)[O-]'
# Nitro on aromatic
'c[N+](=O)[O-]'
```
### Thiols and Sulfides
```python
# Thiol
'[C][SH1]'
# Sulfide
'[C][S][C]'
# Disulfide
'[C][S][S][C]'
# Sulfoxide
'[C][S](=O)[C]'
# Sulfone
'[C][S](=O)(=O)[C]'
```
## Ring Systems
### Simple Rings
```python
# Benzene ring
'c1ccccc1'
'[#6]1:[#6]:[#6]:[#6]:[#6]:[#6]:1' # Explicit atoms
# Cyclohexane
'C1CCCCC1'
# Cyclopentane
'C1CCCC1'
# Any 3-membered ring
'[r3]'
# Any 4-membered ring
'[r4]'
# Any 5-membered ring
'[r5]'
# Any 6-membered ring
'[r6]'
# Any 7-membered ring
'[r7]'
```
### Aromatic Rings
```python
# Aromatic carbon in ring
'[cR]'
# Aromatic nitrogen in ring (pyridine, etc.)
'[nR]'
# Aromatic oxygen in ring (furan, etc.)
'[oR]'
# Aromatic sulfur in ring (thiophene, etc.)
'[sR]'
# Any aromatic ring
'a1aaaaa1'
```
### Heterocycles
```python
# Pyridine
'n1ccccc1'
# Pyrrole
'n1cccc1'
# Furan
'o1cccc1'
# Thiophene
's1cccc1'
# Imidazole
'n1cncc1'
# Pyrimidine
'n1cnccc1'
# Thiazole
'n1ccsc1'
# Oxazole
'n1ccoc1'
```
### Fused Rings
```python
# Naphthalene
'c1ccc2ccccc2c1'
# Indole
'c1ccc2[nH]ccc2c1'
# Quinoline
'n1cccc2ccccc12'
# Benzimidazole
'c1ccc2[nH]cnc2c1'
# Purine
'n1cnc2ncnc2c1'
```
### Macrocycles
```python
# Rings with 8 or more atoms
'[r{8-}]'
# Rings with 9-15 atoms
'[r{9-15}]'
# Rings with more than 12 atoms (macrocycles)
'[r{12-}]'
```
## Specific Structural Features
### Aliphatic vs Aromatic
```python
# Aliphatic carbon
'[C]'
# Aromatic carbon
'[c]'
# Aliphatic carbon in ring
'[CR]'
# Aromatic carbon (alternative)
'[cR]'
```
### Stereochemistry
```python
# Tetrahedral center with clockwise chirality
'[C@]'
# Tetrahedral center with counterclockwise chirality
'[C@@]'
# Any chiral center
'[C@,C@@]'
# E double bond
'C/C=C/C'
# Z double bond
'C/C=C\\C'
```
### Hybridization
```python
# SP hybridization (triple bond)
'[CX2]'
# SP2 hybridization (double bond or aromatic)
'[CX3]'
# SP3 hybridization (single bonds)
'[CX4]'
```
### Charge
```python
# Positive charge
'[+]'
# Negative charge
'[-]'
# Specific charge
'[+1]'
'[-1]'
'[+2]'
# Positively charged nitrogen
'[N+]'
# Negatively charged oxygen
'[O-]'
# Carboxylate anion
'C(=O)[O-]'
# Ammonium cation
'[N+]([C])([C])([C])[C]'
```
## Pharmacophore Features
### Hydrogen Bond Donors
```python
# Hydroxyl
'[OH]'
# Amine
'[NH,NH2]'
# Amide NH
'[N][C](=O)'
# Any H-bond donor
'[OH,NH,NH2,NH3+]'
```
### Hydrogen Bond Acceptors
```python
# Carbonyl oxygen
'[O]=[C,S,P]'
# Ether oxygen
'[OX2]'
# Ester oxygen
'C(=O)[O]'
# Nitrogen acceptor
'[N;!H0]'
# Any H-bond acceptor
'[O,N]'
```
### Hydrophobic Groups
```python
# Alkyl chain (4+ carbons)
'CCCC'
# Branched alkyl
'C(C)(C)C'
# Aromatic rings (hydrophobic)
'c1ccccc1'
```
### Aromatic Interactions
```python
# Benzene for pi-pi stacking
'c1ccccc1'
# Heterocycle for pi-pi
'[a]1[a][a][a][a][a]1'
# Any aromatic ring
'[aR]'
```
## Drug-like Fragments
### Lipinski Fragments
```python
# Aromatic ring with substituents
'c1cc(*)ccc1'
# Aliphatic chain
'CCCC'
# Ether linkage
'[C][O][C]'
# Amine (basic center)
'[N]([C])([C])'
```
### Common Scaffolds
```python
# Benzamide
'c1ccccc1C(=O)N'
# Sulfonamide
'S(=O)(=O)N'
# Urea
'[N][C](=O)[N]'
# Guanidine
'[N]C(=[N])[N]'
# Phosphate
'P(=O)([O-])([O-])[O-]'
```
### Privileged Structures
```python
# Biphenyl
'c1ccccc1-c2ccccc2'
# Benzopyran
'c1ccc2OCCCc2c1'
# Piperazine
'N1CCNCC1'
# Piperidine
'N1CCCCC1'
# Morpholine
'N1CCOCC1'
```
## Reactive Groups
### Electrophiles
```python
# Acyl chloride
'C(=O)Cl'
# Alkyl halide
'[C][Cl,Br,I]'
# Epoxide
'C1OC1'
# Michael acceptor
'C=C[C](=O)'
```
### Nucleophiles
```python
# Primary amine
'[NH2][C]'
# Thiol
'[SH][C]'
# Alcohol
'[OH][C]'
```
## Toxicity Alerts (PAINS)
```python
# Rhodanine
'S1C(=O)NC(=S)C1'
# Catechol
'c1ccc(O)c(O)c1'
# Quinone
'O=C1C=CC(=O)C=C1'
# Hydroquinone
'OC1=CC=C(O)C=C1'
# Alkyl halide (reactive)
'[C][I,Br]'
# Michael acceptor (reactive)
'C=CC(=O)[C,N]'
```
## Metal Binding
```python
# Carboxylate (metal chelator)
'C(=O)[O-]'
# Hydroxamic acid
'C(=O)N[OH]'
# Catechol (iron chelator)
'c1c(O)c(O)ccc1'
# Thiol (metal binding)
'[SH]'
# Histidine-like (metal binding)
'c1ncnc1'
```
## Size and Complexity Filters
```python
# Long aliphatic chains (>6 carbons)
'CCCCCCC'
# Highly branched (quaternary carbon)
'C(C)(C)(C)C'
# Multiple rings
'[R]~[R]' # Two rings connected
# Spiro center
'[C]12[C][C][C]1[C][C]2'
```
## Special Patterns
### Atom Counts
```python
# Any atom
'[*]'
# Heavy atom (not H)
'[!H]'
# Carbon
'[C,c]'
# Heteroatom
'[!C;!H]'
# Halogen
'[F,Cl,Br,I]'
```
### Bond Types
```python
# Single bond
'C-C'
# Double bond
'C=C'
# Triple bond
'C#C'
# Aromatic bond
'c:c'
# Any bond
'C~C'
```
### Ring Membership
```python
# In any ring
'[R]'
# Not in ring
'[!R]'
# In exactly one ring
'[R1]'
# In exactly two rings
'[R2]'
# Ring bond
'[R]~[R]'
```
### Degree and Connectivity
```python
# Total degree 1 (terminal atom)
'[D1]'
# Total degree 2 (chain)
'[D2]'
# Total degree 3 (branch point)
'[D3]'
# Total degree 4 (highly branched)
'[D4]'
# Connected to exactly 2 carbons
'[C]([C])[C]'
```
## Usage Examples
```python
from rdkit import Chem
# Create SMARTS query
pattern = Chem.MolFromSmarts('[CH2][OH1]') # Primary alcohol
# Search molecule
mol = Chem.MolFromSmiles('CCO')
matches = mol.GetSubstructMatches(pattern)
# Multiple patterns
patterns = {
'alcohol': '[OH1][C]',
'amine': '[NH2,NH1][C]',
'carboxylic_acid': 'C(=O)[OH1]'
}
# Check for functional groups
for name, smarts in patterns.items():
query = Chem.MolFromSmarts(smarts)
if mol.HasSubstructMatch(query):
print(f"Found {name}")
```
## Tips for Writing SMARTS
1. **Be specific when needed:** Use atom properties [CX3] instead of just [C]
2. **Use brackets for clarity:** [C] is different from C (aromatic)
3. **Consider aromaticity:** lowercase letters (c, n, o) are aromatic
4. **Check ring membership:** [R] for in-ring, [!R] for not in-ring
5. **Use recursive SMARTS:** $(...) for complex patterns
6. **Test patterns:** Always validate SMARTS on known molecules
7. **Start simple:** Build complex patterns incrementally
## Common SMARTS Syntax
- `[C]` - Aliphatic carbon
- `[c]` - Aromatic carbon
- `[CX4]` - Carbon with 4 connections (sp3)
- `[CX3]` - Carbon with 3 connections (sp2)
- `[CX2]` - Carbon with 2 connections (sp)
- `[CH3]` - Methyl group
- `[R]` - In ring
- `[r6]` - In 6-membered ring
- `[r{5-7}]` - In 5, 6, or 7-membered ring
- `[D2]` - Degree 2 (2 neighbors)
- `[+]` - Positive charge
- `[-]` - Negative charge
- `[!C]` - Not carbon
- `[#6]` - Element with atomic number 6 (carbon)
- `~` - Any bond type
- `-` - Single bond
- `=` - Double bond
- `#` - Triple bond
- `:` - Aromatic bond
- `@` - Clockwise chirality
- `@@` - Counter-clockwise chirality

View File

@@ -0,0 +1,243 @@
#!/usr/bin/env python3
"""
Molecular Properties Calculator
Calculate comprehensive molecular properties and descriptors for molecules.
Supports single molecules or batch processing from files.
Usage:
python molecular_properties.py "CCO"
python molecular_properties.py --file molecules.smi --output properties.csv
"""
import argparse
import sys
from pathlib import Path
try:
from rdkit import Chem
from rdkit.Chem import Descriptors, Lipinski
except ImportError:
print("Error: RDKit not installed. Install with: conda install -c conda-forge rdkit")
sys.exit(1)
def calculate_properties(mol):
"""Calculate comprehensive molecular properties."""
if mol is None:
return None
properties = {
# Basic properties
'SMILES': Chem.MolToSmiles(mol),
'Molecular_Formula': Chem.rdMolDescriptors.CalcMolFormula(mol),
# Molecular weight
'MW': Descriptors.MolWt(mol),
'ExactMW': Descriptors.ExactMolWt(mol),
# Lipophilicity
'LogP': Descriptors.MolLogP(mol),
'MR': Descriptors.MolMR(mol),
# Polar surface area
'TPSA': Descriptors.TPSA(mol),
'LabuteASA': Descriptors.LabuteASA(mol),
# Hydrogen bonding
'HBD': Descriptors.NumHDonors(mol),
'HBA': Descriptors.NumHAcceptors(mol),
# Atom counts
'Heavy_Atoms': Descriptors.HeavyAtomCount(mol),
'Heteroatoms': Descriptors.NumHeteroatoms(mol),
'Valence_Electrons': Descriptors.NumValenceElectrons(mol),
# Ring information
'Rings': Descriptors.RingCount(mol),
'Aromatic_Rings': Descriptors.NumAromaticRings(mol),
'Saturated_Rings': Descriptors.NumSaturatedRings(mol),
'Aliphatic_Rings': Descriptors.NumAliphaticRings(mol),
'Aromatic_Heterocycles': Descriptors.NumAromaticHeterocycles(mol),
# Flexibility
'Rotatable_Bonds': Descriptors.NumRotatableBonds(mol),
'Fraction_Csp3': Descriptors.FractionCsp3(mol),
# Complexity
'BertzCT': Descriptors.BertzCT(mol),
# Drug-likeness
'QED': Descriptors.qed(mol),
}
# Lipinski's Rule of Five
properties['Lipinski_Pass'] = (
properties['MW'] <= 500 and
properties['LogP'] <= 5 and
properties['HBD'] <= 5 and
properties['HBA'] <= 10
)
# Lead-likeness
properties['Lead-like'] = (
250 <= properties['MW'] <= 350 and
properties['LogP'] <= 3.5 and
properties['Rotatable_Bonds'] <= 7
)
return properties
def process_single_molecule(smiles):
"""Process a single SMILES string."""
mol = Chem.MolFromSmiles(smiles)
if mol is None:
print(f"Error: Failed to parse SMILES: {smiles}")
return None
props = calculate_properties(mol)
return props
def process_file(input_file, output_file=None):
"""Process molecules from a file."""
input_path = Path(input_file)
if not input_path.exists():
print(f"Error: File not found: {input_file}")
return
# Determine file type
if input_path.suffix.lower() in ['.sdf', '.mol']:
suppl = Chem.SDMolSupplier(str(input_path))
elif input_path.suffix.lower() in ['.smi', '.smiles', '.txt']:
suppl = Chem.SmilesMolSupplier(str(input_path), titleLine=False)
else:
print(f"Error: Unsupported file format: {input_path.suffix}")
return
results = []
for idx, mol in enumerate(suppl):
if mol is None:
print(f"Warning: Failed to parse molecule {idx+1}")
continue
props = calculate_properties(mol)
if props:
props['Index'] = idx + 1
results.append(props)
# Output results
if output_file:
write_csv(results, output_file)
print(f"Results written to: {output_file}")
else:
# Print to console
for props in results:
print("\n" + "="*60)
for key, value in props.items():
print(f"{key:25s}: {value}")
return results
def write_csv(results, output_file):
"""Write results to CSV file."""
import csv
if not results:
print("No results to write")
return
with open(output_file, 'w', newline='') as f:
fieldnames = results[0].keys()
writer = csv.DictWriter(f, fieldnames=fieldnames)
writer.writeheader()
writer.writerows(results)
def print_properties(props):
"""Print properties in formatted output."""
print("\nMolecular Properties:")
print("="*60)
# Group related properties
print("\n[Basic Information]")
print(f" SMILES: {props['SMILES']}")
print(f" Formula: {props['Molecular_Formula']}")
print("\n[Size & Weight]")
print(f" Molecular Weight: {props['MW']:.2f}")
print(f" Exact MW: {props['ExactMW']:.4f}")
print(f" Heavy Atoms: {props['Heavy_Atoms']}")
print(f" Heteroatoms: {props['Heteroatoms']}")
print("\n[Lipophilicity]")
print(f" LogP: {props['LogP']:.2f}")
print(f" Molar Refractivity: {props['MR']:.2f}")
print("\n[Polarity]")
print(f" TPSA: {props['TPSA']:.2f}")
print(f" Labute ASA: {props['LabuteASA']:.2f}")
print(f" H-bond Donors: {props['HBD']}")
print(f" H-bond Acceptors: {props['HBA']}")
print("\n[Ring Systems]")
print(f" Total Rings: {props['Rings']}")
print(f" Aromatic Rings: {props['Aromatic_Rings']}")
print(f" Saturated Rings: {props['Saturated_Rings']}")
print(f" Aliphatic Rings: {props['Aliphatic_Rings']}")
print(f" Aromatic Heterocycles: {props['Aromatic_Heterocycles']}")
print("\n[Flexibility & Complexity]")
print(f" Rotatable Bonds: {props['Rotatable_Bonds']}")
print(f" Fraction Csp3: {props['Fraction_Csp3']:.3f}")
print(f" Bertz Complexity: {props['BertzCT']:.1f}")
print("\n[Drug-likeness]")
print(f" QED Score: {props['QED']:.3f}")
print(f" Lipinski Pass: {'Yes' if props['Lipinski_Pass'] else 'No'}")
print(f" Lead-like: {'Yes' if props['Lead-like'] else 'No'}")
print("="*60)
def main():
parser = argparse.ArgumentParser(
description='Calculate molecular properties for molecules',
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog="""
Examples:
# Single molecule
python molecular_properties.py "CCO"
# From file
python molecular_properties.py --file molecules.smi
# Save to CSV
python molecular_properties.py --file molecules.sdf --output properties.csv
"""
)
parser.add_argument('smiles', nargs='?', help='SMILES string to analyze')
parser.add_argument('--file', '-f', help='Input file (SDF or SMILES)')
parser.add_argument('--output', '-o', help='Output CSV file')
args = parser.parse_args()
if not args.smiles and not args.file:
parser.print_help()
sys.exit(1)
if args.smiles:
# Process single molecule
props = process_single_molecule(args.smiles)
if props:
print_properties(props)
elif args.file:
# Process file
process_file(args.file, args.output)
if __name__ == '__main__':
main()

View File

@@ -0,0 +1,295 @@
#!/usr/bin/env python3
"""
Molecular Similarity Search
Perform fingerprint-based similarity screening against a database of molecules.
Supports multiple fingerprint types and similarity metrics.
Usage:
python similarity_search.py "CCO" database.smi --threshold 0.7
python similarity_search.py query.smi database.sdf --method morgan --output hits.csv
"""
import argparse
import sys
from pathlib import Path
try:
from rdkit import Chem
from rdkit.Chem import AllChem, MACCSkeys
from rdkit import DataStructs
except ImportError:
print("Error: RDKit not installed. Install with: conda install -c conda-forge rdkit")
sys.exit(1)
FINGERPRINT_METHODS = {
'morgan': 'Morgan fingerprint (ECFP-like)',
'rdkit': 'RDKit topological fingerprint',
'maccs': 'MACCS structural keys',
'atompair': 'Atom pair fingerprint',
'torsion': 'Topological torsion fingerprint'
}
def generate_fingerprint(mol, method='morgan', radius=2, n_bits=2048):
"""Generate molecular fingerprint based on specified method."""
if mol is None:
return None
method = method.lower()
if method == 'morgan':
return AllChem.GetMorganFingerprintAsBitVect(mol, radius, nBits=n_bits)
elif method == 'rdkit':
return Chem.RDKFingerprint(mol, maxPath=7, fpSize=n_bits)
elif method == 'maccs':
return MACCSkeys.GenMACCSKeys(mol)
elif method == 'atompair':
from rdkit.Chem.AtomPairs import Pairs
return Pairs.GetAtomPairFingerprintAsBitVect(mol, nBits=n_bits)
elif method == 'torsion':
from rdkit.Chem.AtomPairs import Torsions
return Torsions.GetHashedTopologicalTorsionFingerprintAsBitVect(mol, nBits=n_bits)
else:
raise ValueError(f"Unknown fingerprint method: {method}")
def load_molecules(file_path):
"""Load molecules from file."""
path = Path(file_path)
if not path.exists():
print(f"Error: File not found: {file_path}")
return []
molecules = []
if path.suffix.lower() in ['.sdf', '.mol']:
suppl = Chem.SDMolSupplier(str(path))
elif path.suffix.lower() in ['.smi', '.smiles', '.txt']:
suppl = Chem.SmilesMolSupplier(str(path), titleLine=False)
else:
print(f"Error: Unsupported file format: {path.suffix}")
return []
for idx, mol in enumerate(suppl):
if mol is None:
print(f"Warning: Failed to parse molecule {idx+1}")
continue
# Try to get molecule name
name = mol.GetProp('_Name') if mol.HasProp('_Name') else f"Mol_{idx+1}"
smiles = Chem.MolToSmiles(mol)
molecules.append({
'index': idx + 1,
'name': name,
'smiles': smiles,
'mol': mol
})
return molecules
def similarity_search(query_mol, database, method='morgan', threshold=0.7,
radius=2, n_bits=2048, metric='tanimoto'):
"""
Perform similarity search.
Args:
query_mol: Query molecule (RDKit Mol object)
database: List of database molecules
method: Fingerprint method
threshold: Similarity threshold (0-1)
radius: Morgan fingerprint radius
n_bits: Fingerprint size
metric: Similarity metric (tanimoto, dice, cosine)
Returns:
List of hits with similarity scores
"""
if query_mol is None:
print("Error: Invalid query molecule")
return []
# Generate query fingerprint
query_fp = generate_fingerprint(query_mol, method, radius, n_bits)
if query_fp is None:
print("Error: Failed to generate query fingerprint")
return []
# Choose similarity function
if metric.lower() == 'tanimoto':
sim_func = DataStructs.TanimotoSimilarity
elif metric.lower() == 'dice':
sim_func = DataStructs.DiceSimilarity
elif metric.lower() == 'cosine':
sim_func = DataStructs.CosineSimilarity
else:
raise ValueError(f"Unknown similarity metric: {metric}")
# Search database
hits = []
for db_entry in database:
db_fp = generate_fingerprint(db_entry['mol'], method, radius, n_bits)
if db_fp is None:
continue
similarity = sim_func(query_fp, db_fp)
if similarity >= threshold:
hits.append({
'index': db_entry['index'],
'name': db_entry['name'],
'smiles': db_entry['smiles'],
'similarity': similarity
})
# Sort by similarity (descending)
hits.sort(key=lambda x: x['similarity'], reverse=True)
return hits
def write_results(hits, output_file):
"""Write results to CSV file."""
import csv
with open(output_file, 'w', newline='') as f:
fieldnames = ['Rank', 'Index', 'Name', 'SMILES', 'Similarity']
writer = csv.DictWriter(f, fieldnames=fieldnames)
writer.writeheader()
for rank, hit in enumerate(hits, 1):
writer.writerow({
'Rank': rank,
'Index': hit['index'],
'Name': hit['name'],
'SMILES': hit['smiles'],
'Similarity': f"{hit['similarity']:.4f}"
})
def print_results(hits, max_display=20):
"""Print results to console."""
if not hits:
print("\nNo hits found above threshold")
return
print(f"\nFound {len(hits)} similar molecules:")
print("="*80)
print(f"{'Rank':<6} {'Index':<8} {'Similarity':<12} {'Name':<20} {'SMILES'}")
print("-"*80)
for rank, hit in enumerate(hits[:max_display], 1):
name = hit['name'][:18] + '..' if len(hit['name']) > 20 else hit['name']
smiles = hit['smiles'][:40] + '...' if len(hit['smiles']) > 43 else hit['smiles']
print(f"{rank:<6} {hit['index']:<8} {hit['similarity']:<12.4f} {name:<20} {smiles}")
if len(hits) > max_display:
print(f"\n... and {len(hits) - max_display} more")
print("="*80)
def main():
parser = argparse.ArgumentParser(
description='Molecular similarity search using fingerprints',
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog=f"""
Available fingerprint methods:
{chr(10).join(f' {k:12s} - {v}' for k, v in FINGERPRINT_METHODS.items())}
Similarity metrics:
tanimoto - Tanimoto coefficient (default)
dice - Dice coefficient
cosine - Cosine similarity
Examples:
# Search with SMILES query
python similarity_search.py "CCO" database.smi --threshold 0.7
# Use different fingerprint
python similarity_search.py query.smi database.sdf --method maccs
# Save results
python similarity_search.py "c1ccccc1" database.smi --output hits.csv
# Adjust Morgan radius
python similarity_search.py "CCO" database.smi --method morgan --radius 3
"""
)
parser.add_argument('query', help='Query SMILES or file')
parser.add_argument('database', help='Database file (SDF or SMILES)')
parser.add_argument('--method', '-m', default='morgan',
choices=FINGERPRINT_METHODS.keys(),
help='Fingerprint method (default: morgan)')
parser.add_argument('--threshold', '-t', type=float, default=0.7,
help='Similarity threshold (default: 0.7)')
parser.add_argument('--radius', '-r', type=int, default=2,
help='Morgan fingerprint radius (default: 2)')
parser.add_argument('--bits', '-b', type=int, default=2048,
help='Fingerprint size (default: 2048)')
parser.add_argument('--metric', default='tanimoto',
choices=['tanimoto', 'dice', 'cosine'],
help='Similarity metric (default: tanimoto)')
parser.add_argument('--output', '-o', help='Output CSV file')
parser.add_argument('--max-display', type=int, default=20,
help='Maximum hits to display (default: 20)')
args = parser.parse_args()
# Load query
query_path = Path(args.query)
if query_path.exists():
# Query is a file
query_mols = load_molecules(args.query)
if not query_mols:
print("Error: No valid molecules in query file")
sys.exit(1)
query_mol = query_mols[0]['mol']
query_smiles = query_mols[0]['smiles']
else:
# Query is SMILES string
query_mol = Chem.MolFromSmiles(args.query)
query_smiles = args.query
if query_mol is None:
print(f"Error: Failed to parse query SMILES: {args.query}")
sys.exit(1)
print(f"Query: {query_smiles}")
print(f"Method: {args.method}")
print(f"Threshold: {args.threshold}")
print(f"Loading database: {args.database}...")
# Load database
database = load_molecules(args.database)
if not database:
print("Error: No valid molecules in database")
sys.exit(1)
print(f"Loaded {len(database)} molecules")
print("Searching...")
# Perform search
hits = similarity_search(
query_mol, database,
method=args.method,
threshold=args.threshold,
radius=args.radius,
n_bits=args.bits,
metric=args.metric
)
# Output results
if args.output:
write_results(hits, args.output)
print(f"\nResults written to: {args.output}")
print_results(hits, args.max_display)
if __name__ == '__main__':
main()

View File

@@ -0,0 +1,386 @@
#!/usr/bin/env python3
"""
Substructure Filter
Filter molecules based on substructure patterns using SMARTS.
Supports inclusion and exclusion filters, and custom pattern libraries.
Usage:
python substructure_filter.py molecules.smi --pattern "c1ccccc1" --output filtered.smi
python substructure_filter.py database.sdf --exclude "C(=O)Cl" --filter-type functional-groups
"""
import argparse
import sys
from pathlib import Path
try:
from rdkit import Chem
except ImportError:
print("Error: RDKit not installed. Install with: conda install -c conda-forge rdkit")
sys.exit(1)
# Common SMARTS pattern libraries
PATTERN_LIBRARIES = {
'functional-groups': {
'alcohol': '[OH][C]',
'aldehyde': '[CH1](=O)',
'ketone': '[C](=O)[C]',
'carboxylic_acid': 'C(=O)[OH]',
'ester': 'C(=O)O[C]',
'amide': 'C(=O)N',
'amine': '[NX3]',
'ether': '[C][O][C]',
'nitrile': 'C#N',
'nitro': '[N+](=O)[O-]',
'halide': '[C][F,Cl,Br,I]',
'thiol': '[C][SH]',
'sulfide': '[C][S][C]',
},
'rings': {
'benzene': 'c1ccccc1',
'pyridine': 'n1ccccc1',
'pyrrole': 'n1cccc1',
'furan': 'o1cccc1',
'thiophene': 's1cccc1',
'imidazole': 'n1cncc1',
'indole': 'c1ccc2[nH]ccc2c1',
'naphthalene': 'c1ccc2ccccc2c1',
},
'pains': {
'rhodanine': 'S1C(=O)NC(=S)C1',
'catechol': 'c1ccc(O)c(O)c1',
'quinone': 'O=C1C=CC(=O)C=C1',
'michael_acceptor': 'C=CC(=O)',
'alkyl_halide': '[C][I,Br]',
},
'privileged': {
'biphenyl': 'c1ccccc1-c2ccccc2',
'piperazine': 'N1CCNCC1',
'piperidine': 'N1CCCCC1',
'morpholine': 'N1CCOCC1',
}
}
def load_molecules(file_path, keep_props=True):
"""Load molecules from file."""
path = Path(file_path)
if not path.exists():
print(f"Error: File not found: {file_path}")
return []
molecules = []
if path.suffix.lower() in ['.sdf', '.mol']:
suppl = Chem.SDMolSupplier(str(path))
elif path.suffix.lower() in ['.smi', '.smiles', '.txt']:
suppl = Chem.SmilesMolSupplier(str(path), titleLine=False)
else:
print(f"Error: Unsupported file format: {path.suffix}")
return []
for idx, mol in enumerate(suppl):
if mol is None:
print(f"Warning: Failed to parse molecule {idx+1}")
continue
molecules.append(mol)
return molecules
def create_pattern_query(pattern_string):
"""Create SMARTS query from string or SMILES."""
# Try as SMARTS first
query = Chem.MolFromSmarts(pattern_string)
if query is not None:
return query
# Try as SMILES
query = Chem.MolFromSmiles(pattern_string)
if query is not None:
return query
print(f"Error: Invalid pattern: {pattern_string}")
return None
def filter_molecules(molecules, include_patterns=None, exclude_patterns=None,
match_all_include=False):
"""
Filter molecules based on substructure patterns.
Args:
molecules: List of RDKit Mol objects
include_patterns: List of (name, pattern) tuples to include
exclude_patterns: List of (name, pattern) tuples to exclude
match_all_include: If True, molecule must match ALL include patterns
Returns:
Tuple of (filtered_molecules, match_info)
"""
filtered = []
match_info = []
for idx, mol in enumerate(molecules):
if mol is None:
continue
# Check exclusion patterns first
excluded = False
exclude_matches = []
if exclude_patterns:
for name, pattern in exclude_patterns:
if mol.HasSubstructMatch(pattern):
excluded = True
exclude_matches.append(name)
if excluded:
match_info.append({
'index': idx + 1,
'smiles': Chem.MolToSmiles(mol),
'status': 'excluded',
'matches': exclude_matches
})
continue
# Check inclusion patterns
if include_patterns:
include_matches = []
for name, pattern in include_patterns:
if mol.HasSubstructMatch(pattern):
include_matches.append(name)
# Decide if molecule passes inclusion filter
if match_all_include:
passed = len(include_matches) == len(include_patterns)
else:
passed = len(include_matches) > 0
if passed:
filtered.append(mol)
match_info.append({
'index': idx + 1,
'smiles': Chem.MolToSmiles(mol),
'status': 'included',
'matches': include_matches
})
else:
match_info.append({
'index': idx + 1,
'smiles': Chem.MolToSmiles(mol),
'status': 'no_match',
'matches': []
})
else:
# No inclusion patterns, keep all non-excluded
filtered.append(mol)
match_info.append({
'index': idx + 1,
'smiles': Chem.MolToSmiles(mol),
'status': 'included',
'matches': []
})
return filtered, match_info
def write_molecules(molecules, output_file):
"""Write molecules to file."""
output_path = Path(output_file)
if output_path.suffix.lower() in ['.sdf']:
writer = Chem.SDWriter(str(output_path))
for mol in molecules:
writer.write(mol)
writer.close()
elif output_path.suffix.lower() in ['.smi', '.smiles', '.txt']:
with open(output_path, 'w') as f:
for mol in molecules:
smiles = Chem.MolToSmiles(mol)
name = mol.GetProp('_Name') if mol.HasProp('_Name') else ''
f.write(f"{smiles} {name}\n")
else:
print(f"Error: Unsupported output format: {output_path.suffix}")
return
print(f"Wrote {len(molecules)} molecules to {output_file}")
def write_report(match_info, output_file):
"""Write detailed match report."""
import csv
with open(output_file, 'w', newline='') as f:
fieldnames = ['Index', 'SMILES', 'Status', 'Matches']
writer = csv.DictWriter(f, fieldnames=fieldnames)
writer.writeheader()
for info in match_info:
writer.writerow({
'Index': info['index'],
'SMILES': info['smiles'],
'Status': info['status'],
'Matches': ', '.join(info['matches'])
})
def print_summary(total, filtered, match_info):
"""Print filtering summary."""
print("\n" + "="*60)
print("Filtering Summary")
print("="*60)
print(f"Total molecules: {total}")
print(f"Passed filter: {len(filtered)}")
print(f"Filtered out: {total - len(filtered)}")
print(f"Pass rate: {len(filtered)/total*100:.1f}%")
# Count by status
status_counts = {}
for info in match_info:
status = info['status']
status_counts[status] = status_counts.get(status, 0) + 1
print("\nBreakdown:")
for status, count in status_counts.items():
print(f" {status:15s}: {count}")
print("="*60)
def main():
parser = argparse.ArgumentParser(
description='Filter molecules by substructure patterns',
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog=f"""
Pattern libraries:
--filter-type functional-groups Common functional groups
--filter-type rings Ring systems
--filter-type pains PAINS (Pan-Assay Interference)
--filter-type privileged Privileged structures
Examples:
# Include molecules with benzene ring
python substructure_filter.py molecules.smi --pattern "c1ccccc1" -o filtered.smi
# Exclude reactive groups
python substructure_filter.py database.sdf --exclude "C(=O)Cl" -o clean.sdf
# Filter by functional groups
python substructure_filter.py molecules.smi --filter-type functional-groups -o fg.smi
# Remove PAINS
python substructure_filter.py compounds.smi --filter-type pains --exclude-mode -o clean.smi
# Multiple patterns
python substructure_filter.py mol.smi --pattern "c1ccccc1" --pattern "N" -o aromatic_amines.smi
"""
)
parser.add_argument('input', help='Input file (SDF or SMILES)')
parser.add_argument('--pattern', '-p', action='append',
help='SMARTS/SMILES pattern to include (can specify multiple)')
parser.add_argument('--exclude', '-e', action='append',
help='SMARTS/SMILES pattern to exclude (can specify multiple)')
parser.add_argument('--filter-type', choices=PATTERN_LIBRARIES.keys(),
help='Use predefined pattern library')
parser.add_argument('--exclude-mode', action='store_true',
help='Use filter-type patterns for exclusion instead of inclusion')
parser.add_argument('--match-all', action='store_true',
help='Molecule must match ALL include patterns')
parser.add_argument('--output', '-o', help='Output file')
parser.add_argument('--report', '-r', help='Write detailed report to CSV')
parser.add_argument('--list-patterns', action='store_true',
help='List available pattern libraries and exit')
args = parser.parse_args()
# List patterns mode
if args.list_patterns:
print("\nAvailable Pattern Libraries:")
print("="*60)
for lib_name, patterns in PATTERN_LIBRARIES.items():
print(f"\n{lib_name}:")
for name, pattern in patterns.items():
print(f" {name:25s}: {pattern}")
sys.exit(0)
# Load molecules
print(f"Loading molecules from: {args.input}")
molecules = load_molecules(args.input)
if not molecules:
print("Error: No valid molecules loaded")
sys.exit(1)
print(f"Loaded {len(molecules)} molecules")
# Prepare patterns
include_patterns = []
exclude_patterns = []
# Add custom include patterns
if args.pattern:
for pattern_str in args.pattern:
query = create_pattern_query(pattern_str)
if query:
include_patterns.append(('custom', query))
# Add custom exclude patterns
if args.exclude:
for pattern_str in args.exclude:
query = create_pattern_query(pattern_str)
if query:
exclude_patterns.append(('custom', query))
# Add library patterns
if args.filter_type:
lib_patterns = PATTERN_LIBRARIES[args.filter_type]
for name, pattern_str in lib_patterns.items():
query = create_pattern_query(pattern_str)
if query:
if args.exclude_mode:
exclude_patterns.append((name, query))
else:
include_patterns.append((name, query))
if not include_patterns and not exclude_patterns:
print("Error: No patterns specified")
sys.exit(1)
# Print filter configuration
print(f"\nFilter configuration:")
if include_patterns:
print(f" Include patterns: {len(include_patterns)}")
if args.match_all:
print(" Mode: Match ALL")
else:
print(" Mode: Match ANY")
if exclude_patterns:
print(f" Exclude patterns: {len(exclude_patterns)}")
# Perform filtering
print("\nFiltering...")
filtered, match_info = filter_molecules(
molecules,
include_patterns=include_patterns if include_patterns else None,
exclude_patterns=exclude_patterns if exclude_patterns else None,
match_all_include=args.match_all
)
# Print summary
print_summary(len(molecules), filtered, match_info)
# Write output
if args.output:
write_molecules(filtered, args.output)
if args.report:
write_report(match_info, args.report)
print(f"Detailed report written to: {args.report}")
if __name__ == '__main__':
main()