Initial commit

This commit is contained in:
Zhongwei Li
2025-11-30 08:30:10 +08:00
commit f0bd18fb4e
824 changed files with 331919 additions and 0 deletions

View File

@@ -0,0 +1,404 @@
#!/usr/bin/env python3
"""
TDC Molecular Generation with Oracles Template
This script demonstrates how to use TDC oracles for molecular generation
tasks including goal-directed generation and distribution learning.
Usage:
python molecular_generation.py
"""
from tdc.generation import MolGen
from tdc import Oracle
import numpy as np
def load_generation_dataset():
"""
Load molecular generation dataset
"""
print("=" * 60)
print("Loading Molecular Generation Dataset")
print("=" * 60)
# Load ChEMBL dataset
data = MolGen(name='ChEMBL_V29')
# Get training molecules
split = data.get_split()
train_smiles = split['train']['Drug'].tolist()
print(f"\nDataset: ChEMBL_V29")
print(f"Training molecules: {len(train_smiles)}")
# Display sample molecules
print("\nSample SMILES:")
for i, smiles in enumerate(train_smiles[:5], 1):
print(f" {i}. {smiles}")
return train_smiles
def single_oracle_example():
"""
Example: Using a single oracle for molecular evaluation
"""
print("\n" + "=" * 60)
print("Example 1: Single Oracle Evaluation")
print("=" * 60)
# Initialize oracle for GSK3B target
oracle = Oracle(name='GSK3B')
# Test molecules
test_molecules = [
'CC(C)Cc1ccc(cc1)C(C)C(O)=O', # Ibuprofen
'CC(=O)Oc1ccccc1C(=O)O', # Aspirin
'Cn1c(=O)c2c(ncn2C)n(C)c1=O', # Caffeine
'CN1C=NC2=C1C(=O)N(C(=O)N2C)C' # Theophylline
]
print("\nEvaluating molecules with GSK3B oracle:")
print("-" * 60)
for smiles in test_molecules:
score = oracle(smiles)
print(f"SMILES: {smiles}")
print(f"GSK3B score: {score:.4f}\n")
def multiple_oracles_example():
"""
Example: Using multiple oracles for multi-objective optimization
"""
print("\n" + "=" * 60)
print("Example 2: Multiple Oracles (Multi-Objective)")
print("=" * 60)
# Initialize multiple oracles
oracles = {
'QED': Oracle(name='QED'), # Drug-likeness
'SA': Oracle(name='SA'), # Synthetic accessibility
'GSK3B': Oracle(name='GSK3B'), # Target binding
'LogP': Oracle(name='LogP') # Lipophilicity
}
# Test molecule
test_smiles = 'CC(C)Cc1ccc(cc1)C(C)C(O)=O'
print(f"\nEvaluating: {test_smiles}")
print("-" * 60)
scores = {}
for name, oracle in oracles.items():
score = oracle(test_smiles)
scores[name] = score
print(f"{name:10s}: {score:.4f}")
# Multi-objective score (weighted combination)
print("\n--- Multi-Objective Scoring ---")
# Invert SA (lower is better, so we invert for maximization)
sa_score = 1.0 / (1.0 + scores['SA'])
# Weighted combination
weights = {'QED': 0.3, 'SA': 0.2, 'GSK3B': 0.4, 'LogP': 0.1}
multi_score = (
weights['QED'] * scores['QED'] +
weights['SA'] * sa_score +
weights['GSK3B'] * scores['GSK3B'] +
weights['LogP'] * (scores['LogP'] / 5.0) # Normalize LogP
)
print(f"Multi-objective score: {multi_score:.4f}")
print(f"Weights: {weights}")
def batch_evaluation_example():
"""
Example: Batch evaluation of multiple molecules
"""
print("\n" + "=" * 60)
print("Example 3: Batch Evaluation")
print("=" * 60)
# Generate sample molecules
molecules = [
'CC(C)Cc1ccc(cc1)C(C)C(O)=O',
'CC(=O)Oc1ccccc1C(=O)O',
'Cn1c(=O)c2c(ncn2C)n(C)c1=O',
'CN1C=NC2=C1C(=O)N(C(=O)N2C)C',
'CC(C)NCC(COc1ccc(cc1)COCCOC(C)C)O'
]
# Initialize oracle
oracle = Oracle(name='DRD2')
print(f"\nBatch evaluating {len(molecules)} molecules with DRD2 oracle...")
# Batch evaluation (more efficient than individual calls)
scores = oracle(molecules)
print("\nResults:")
print("-" * 60)
for smiles, score in zip(molecules, scores):
print(f"{smiles[:40]:40s}... Score: {score:.4f}")
# Statistics
print(f"\nStatistics:")
print(f" Mean score: {np.mean(scores):.4f}")
print(f" Std score: {np.std(scores):.4f}")
print(f" Min score: {np.min(scores):.4f}")
print(f" Max score: {np.max(scores):.4f}")
def goal_directed_generation_template():
"""
Template for goal-directed molecular generation
"""
print("\n" + "=" * 60)
print("Example 4: Goal-Directed Generation Template")
print("=" * 60)
template = '''
# Template for goal-directed molecular generation
from tdc.generation import MolGen
from tdc import Oracle
import numpy as np
# 1. Load training data
data = MolGen(name='ChEMBL_V29')
train_smiles = data.get_split()['train']['Drug'].tolist()
# 2. Initialize oracle(s)
oracle = Oracle(name='GSK3B')
# 3. Initialize your generative model
# model = YourGenerativeModel()
# model.fit(train_smiles)
# 4. Generation loop
num_iterations = 100
num_molecules_per_iter = 100
best_molecules = []
for iteration in range(num_iterations):
# Generate candidate molecules
# candidates = model.generate(num_molecules_per_iter)
# Evaluate with oracle
scores = oracle(candidates)
# Select top molecules
top_indices = np.argsort(scores)[-10:]
top_molecules = [candidates[i] for i in top_indices]
top_scores = [scores[i] for i in top_indices]
# Store best molecules
best_molecules.extend(zip(top_molecules, top_scores))
# Optional: Fine-tune model on top molecules
# model.fine_tune(top_molecules)
# Print progress
print(f"Iteration {iteration}: Best score = {max(scores):.4f}")
# Sort and display top molecules
best_molecules.sort(key=lambda x: x[1], reverse=True)
print("\\nTop 10 molecules:")
for smiles, score in best_molecules[:10]:
print(f"{smiles}: {score:.4f}")
'''
print("\nGoal-Directed Generation Template:")
print("=" * 60)
print(template)
def distribution_learning_example(train_smiles):
"""
Example: Distribution learning evaluation
"""
print("\n" + "=" * 60)
print("Example 5: Distribution Learning")
print("=" * 60)
# Use subset for demonstration
train_subset = train_smiles[:1000]
# Initialize oracle
oracle = Oracle(name='QED')
print("\nEvaluating property distribution...")
# Evaluate training set
print("Computing training set distribution...")
train_scores = oracle(train_subset)
# Simulate generated molecules (in practice, use your generative model)
# For demo: add noise to training molecules
print("Computing generated set distribution...")
generated_scores = train_scores + np.random.normal(0, 0.1, len(train_scores))
generated_scores = np.clip(generated_scores, 0, 1) # QED is [0, 1]
# Compare distributions
print("\n--- Distribution Statistics ---")
print(f"Training set (n={len(train_subset)}):")
print(f" Mean: {np.mean(train_scores):.4f}")
print(f" Std: {np.std(train_scores):.4f}")
print(f" Median: {np.median(train_scores):.4f}")
print(f"\nGenerated set (n={len(generated_scores)}):")
print(f" Mean: {np.mean(generated_scores):.4f}")
print(f" Std: {np.std(generated_scores):.4f}")
print(f" Median: {np.median(generated_scores):.4f}")
# Distribution similarity metrics
from scipy.stats import ks_2samp
ks_statistic, p_value = ks_2samp(train_scores, generated_scores)
print(f"\nKolmogorov-Smirnov Test:")
print(f" KS statistic: {ks_statistic:.4f}")
print(f" P-value: {p_value:.4f}")
if p_value > 0.05:
print(" → Distributions are similar (p > 0.05)")
else:
print(" → Distributions are significantly different (p < 0.05)")
def available_oracles_info():
"""
Display information about available oracles
"""
print("\n" + "=" * 60)
print("Example 6: Available Oracles")
print("=" * 60)
oracle_info = {
'Biochemical Targets': [
'DRD2', 'GSK3B', 'JNK3', '5HT2A', 'ACE',
'MAPK', 'CDK', 'P38', 'PARP1', 'PIK3CA'
],
'Physicochemical Properties': [
'QED', 'SA', 'LogP', 'MW', 'Lipinski'
],
'Composite Metrics': [
'Isomer_Meta', 'Median1', 'Median2',
'Rediscovery', 'Similarity', 'Uniqueness', 'Novelty'
],
'Specialized': [
'ASKCOS', 'Docking', 'Vina'
]
}
print("\nAvailable Oracle Categories:")
print("-" * 60)
for category, oracles in oracle_info.items():
print(f"\n{category}:")
for oracle_name in oracles:
print(f" - {oracle_name}")
print("\nFor detailed oracle documentation, see:")
print(" references/oracles.md")
def constraint_satisfaction_example():
"""
Example: Molecular generation with constraints
"""
print("\n" + "=" * 60)
print("Example 7: Constraint Satisfaction")
print("=" * 60)
# Define constraints
constraints = {
'QED': (0.5, 1.0), # Drug-likeness >= 0.5
'SA': (1.0, 5.0), # Easy to synthesize
'MW': (200, 500), # Molecular weight 200-500 Da
'LogP': (0, 3) # Lipophilicity 0-3
}
# Initialize oracles
oracles = {name: Oracle(name=name) for name in constraints.keys()}
# Test molecules
test_molecules = [
'CC(C)Cc1ccc(cc1)C(C)C(O)=O',
'CC(=O)Oc1ccccc1C(=O)O',
'Cn1c(=O)c2c(ncn2C)n(C)c1=O'
]
print("\nConstraints:")
for prop, (min_val, max_val) in constraints.items():
print(f" {prop}: [{min_val}, {max_val}]")
print("\n" + "-" * 60)
print("Evaluating molecules against constraints:")
print("-" * 60)
for smiles in test_molecules:
print(f"\nSMILES: {smiles}")
satisfies_all = True
for prop, (min_val, max_val) in constraints.items():
score = oracles[prop](smiles)
satisfies = min_val <= score <= max_val
status = "" if satisfies else ""
print(f" {prop:10s}: {score:7.2f} [{min_val:5.1f}, {max_val:5.1f}] {status}")
satisfies_all = satisfies_all and satisfies
result = "PASS" if satisfies_all else "FAIL"
print(f" Overall: {result}")
def main():
"""
Main function to run all molecular generation examples
"""
print("\n" + "=" * 60)
print("TDC Molecular Generation with Oracles Examples")
print("=" * 60)
# Load generation dataset
train_smiles = load_generation_dataset()
# Example 1: Single oracle
single_oracle_example()
# Example 2: Multiple oracles
multiple_oracles_example()
# Example 3: Batch evaluation
batch_evaluation_example()
# Example 4: Goal-directed generation template
goal_directed_generation_template()
# Example 5: Distribution learning
distribution_learning_example(train_smiles)
# Example 6: Available oracles
available_oracles_info()
# Example 7: Constraint satisfaction
constraint_satisfaction_example()
print("\n" + "=" * 60)
print("Molecular generation examples completed!")
print("=" * 60)
print("\nNext steps:")
print("1. Implement your generative model")
print("2. Use oracles to guide generation")
print("3. Evaluate generated molecules")
print("4. Iterate and optimize")
print("=" * 60)
if __name__ == "__main__":
main()