Initial commit

This commit is contained in:
Zhongwei Li
2025-11-30 08:30:10 +08:00
commit f0bd18fb4e
824 changed files with 331919 additions and 0 deletions

View File

@@ -0,0 +1,327 @@
#!/usr/bin/env python3
"""
TDC Benchmark Group Evaluation Template
This script demonstrates how to use TDC benchmark groups for systematic
model evaluation following the required 5-seed protocol.
Usage:
python benchmark_evaluation.py
"""
from tdc.benchmark_group import admet_group
from tdc import Evaluator
import numpy as np
import pandas as pd
def load_benchmark_group():
"""
Load the ADMET benchmark group
"""
print("=" * 60)
print("Loading ADMET Benchmark Group")
print("=" * 60)
# Initialize benchmark group
group = admet_group(path='data/')
# Get available benchmarks
print("\nAvailable benchmarks in ADMET group:")
benchmark_names = group.dataset_names
print(f"Total: {len(benchmark_names)} datasets")
for i, name in enumerate(benchmark_names[:10], 1):
print(f" {i}. {name}")
if len(benchmark_names) > 10:
print(f" ... and {len(benchmark_names) - 10} more")
return group
def single_dataset_evaluation(group, dataset_name='Caco2_Wang'):
"""
Example: Evaluate on a single dataset with 5-seed protocol
"""
print("\n" + "=" * 60)
print(f"Example 1: Single Dataset Evaluation ({dataset_name})")
print("=" * 60)
# Get dataset benchmarks
benchmark = group.get(dataset_name)
print(f"\nBenchmark structure:")
print(f" Seeds: {list(benchmark.keys())}")
# Required: Evaluate with 5 different seeds
predictions = {}
for seed in [1, 2, 3, 4, 5]:
print(f"\n--- Seed {seed} ---")
# Get train/valid data for this seed
train = benchmark[seed]['train']
valid = benchmark[seed]['valid']
print(f"Train size: {len(train)}")
print(f"Valid size: {len(valid)}")
# TODO: Replace with your model training
# model = YourModel()
# model.fit(train['Drug'], train['Y'])
# For demonstration, create dummy predictions
# Replace with: predictions[seed] = model.predict(benchmark[seed]['test'])
test = benchmark[seed]['test']
y_true = test['Y'].values
# Simulate predictions (add controlled noise)
np.random.seed(seed)
y_pred = y_true + np.random.normal(0, 0.3, len(y_true))
predictions[seed] = y_pred
# Evaluate this seed
evaluator = Evaluator(name='MAE')
score = evaluator(y_true, y_pred)
print(f"MAE for seed {seed}: {score:.4f}")
# Evaluate across all seeds
print("\n--- Overall Evaluation ---")
results = group.evaluate(predictions)
print(f"\nResults for {dataset_name}:")
mean_score, std_score = results[dataset_name]
print(f" Mean MAE: {mean_score:.4f}")
print(f" Std MAE: {std_score:.4f}")
return predictions, results
def multiple_datasets_evaluation(group):
"""
Example: Evaluate on multiple datasets
"""
print("\n" + "=" * 60)
print("Example 2: Multiple Datasets Evaluation")
print("=" * 60)
# Select a subset of datasets for demonstration
selected_datasets = ['Caco2_Wang', 'HIA_Hou', 'Bioavailability_Ma']
all_predictions = {}
all_results = {}
for dataset_name in selected_datasets:
print(f"\n{'='*40}")
print(f"Evaluating: {dataset_name}")
print(f"{'='*40}")
benchmark = group.get(dataset_name)
predictions = {}
# Train and predict for each seed
for seed in [1, 2, 3, 4, 5]:
train = benchmark[seed]['train']
test = benchmark[seed]['test']
# TODO: Replace with your model
# model = YourModel()
# model.fit(train['Drug'], train['Y'])
# predictions[seed] = model.predict(test['Drug'])
# Dummy predictions for demonstration
np.random.seed(seed)
y_true = test['Y'].values
y_pred = y_true + np.random.normal(0, 0.3, len(y_true))
predictions[seed] = y_pred
all_predictions[dataset_name] = predictions
# Evaluate this dataset
results = group.evaluate({dataset_name: predictions})
all_results[dataset_name] = results[dataset_name]
mean_score, std_score = results[dataset_name]
print(f" {dataset_name}: {mean_score:.4f} ± {std_score:.4f}")
# Summary
print("\n" + "=" * 60)
print("Summary of Results")
print("=" * 60)
results_df = pd.DataFrame([
{
'Dataset': name,
'Mean MAE': f"{mean:.4f}",
'Std MAE': f"{std:.4f}"
}
for name, (mean, std) in all_results.items()
])
print(results_df.to_string(index=False))
return all_predictions, all_results
def custom_model_template():
"""
Template for integrating your own model with TDC benchmarks
"""
print("\n" + "=" * 60)
print("Example 3: Custom Model Template")
print("=" * 60)
code_template = '''
# Template for using your own model with TDC benchmarks
from tdc.benchmark_group import admet_group
from your_library import YourModel # Replace with your model
# Initialize benchmark group
group = admet_group(path='data/')
benchmark = group.get('Caco2_Wang')
predictions = {}
for seed in [1, 2, 3, 4, 5]:
# Get data for this seed
train = benchmark[seed]['train']
valid = benchmark[seed]['valid']
test = benchmark[seed]['test']
# Extract features and labels
X_train, y_train = train['Drug'], train['Y']
X_valid, y_valid = valid['Drug'], valid['Y']
X_test = test['Drug']
# Initialize and train model
model = YourModel(random_state=seed)
model.fit(X_train, y_train)
# Optionally use validation set for early stopping
# model.fit(X_train, y_train, validation_data=(X_valid, y_valid))
# Make predictions on test set
predictions[seed] = model.predict(X_test)
# Evaluate with TDC
results = group.evaluate(predictions)
print(f"Results: {results}")
'''
print("\nCustom Model Integration Template:")
print("=" * 60)
print(code_template)
return code_template
def multi_seed_statistics(predictions_dict):
"""
Example: Analyzing multi-seed prediction statistics
"""
print("\n" + "=" * 60)
print("Example 4: Multi-Seed Statistics Analysis")
print("=" * 60)
# Analyze prediction variability across seeds
all_preds = np.array([predictions_dict[seed] for seed in [1, 2, 3, 4, 5]])
print("\nPrediction statistics across 5 seeds:")
print(f" Shape: {all_preds.shape}")
print(f" Mean prediction: {all_preds.mean():.4f}")
print(f" Std across seeds: {all_preds.std(axis=0).mean():.4f}")
print(f" Min prediction: {all_preds.min():.4f}")
print(f" Max prediction: {all_preds.max():.4f}")
# Per-sample variance
per_sample_std = all_preds.std(axis=0)
print(f"\nPer-sample prediction std:")
print(f" Mean: {per_sample_std.mean():.4f}")
print(f" Median: {np.median(per_sample_std):.4f}")
print(f" Max: {per_sample_std.max():.4f}")
def leaderboard_submission_guide():
"""
Guide for submitting to TDC leaderboards
"""
print("\n" + "=" * 60)
print("Example 5: Leaderboard Submission Guide")
print("=" * 60)
guide = """
To submit results to TDC leaderboards:
1. Evaluate your model following the 5-seed protocol:
- Use seeds [1, 2, 3, 4, 5] exactly as provided
- Do not modify the train/valid/test splits
- Report mean ± std across all 5 seeds
2. Format your results:
results = group.evaluate(predictions)
# Returns: {'dataset_name': [mean_score, std_score]}
3. Submit to leaderboard:
- Visit: https://tdcommons.ai/benchmark/admet_group/
- Click on your dataset of interest
- Submit your results with:
* Model name and description
* Mean score ± standard deviation
* Reference to paper/code (if available)
4. Best practices:
- Report all datasets in the benchmark group
- Include model hyperparameters
- Share code for reproducibility
- Compare against baseline models
5. Evaluation metrics:
- ADMET Group uses MAE by default
- Other groups may use different metrics
- Check benchmark-specific requirements
"""
print(guide)
def main():
"""
Main function to run all benchmark evaluation examples
"""
print("\n" + "=" * 60)
print("TDC Benchmark Group Evaluation Examples")
print("=" * 60)
# Load benchmark group
group = load_benchmark_group()
# Example 1: Single dataset evaluation
predictions, results = single_dataset_evaluation(group)
# Example 2: Multiple datasets evaluation
all_predictions, all_results = multiple_datasets_evaluation(group)
# Example 3: Custom model template
custom_model_template()
# Example 4: Multi-seed statistics
multi_seed_statistics(predictions)
# Example 5: Leaderboard submission guide
leaderboard_submission_guide()
print("\n" + "=" * 60)
print("Benchmark evaluation examples completed!")
print("=" * 60)
print("\nNext steps:")
print("1. Replace dummy predictions with your model")
print("2. Run full evaluation on all benchmark datasets")
print("3. Submit results to TDC leaderboard")
print("=" * 60)
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,214 @@
#!/usr/bin/env python3
"""
TDC Data Loading and Splitting Template
This script demonstrates how to load TDC datasets and apply different
splitting strategies for model training and evaluation.
Usage:
python load_and_split_data.py
"""
from tdc.single_pred import ADME
from tdc.multi_pred import DTI
from tdc import Evaluator
import pandas as pd
def load_single_pred_example():
"""
Example: Loading and splitting a single-prediction dataset (ADME)
"""
print("=" * 60)
print("Example 1: Single-Prediction Task (ADME)")
print("=" * 60)
# Load Caco2 dataset (intestinal permeability)
print("\nLoading Caco2_Wang dataset...")
data = ADME(name='Caco2_Wang')
# Get basic dataset info
print(f"\nDataset size: {len(data.get_data())} molecules")
data.print_stats()
# Method 1: Scaffold split (default, recommended)
print("\n--- Scaffold Split ---")
split = data.get_split(method='scaffold', seed=42, frac=[0.7, 0.1, 0.2])
train = split['train']
valid = split['valid']
test = split['test']
print(f"Train: {len(train)} molecules")
print(f"Valid: {len(valid)} molecules")
print(f"Test: {len(test)} molecules")
# Display sample data
print("\nSample training data:")
print(train.head(3))
# Method 2: Random split
print("\n--- Random Split ---")
split_random = data.get_split(method='random', seed=42, frac=[0.8, 0.1, 0.1])
print(f"Train: {len(split_random['train'])} molecules")
print(f"Valid: {len(split_random['valid'])} molecules")
print(f"Test: {len(split_random['test'])} molecules")
return split
def load_multi_pred_example():
"""
Example: Loading and splitting a multi-prediction dataset (DTI)
"""
print("\n" + "=" * 60)
print("Example 2: Multi-Prediction Task (DTI)")
print("=" * 60)
# Load BindingDB Kd dataset (drug-target interactions)
print("\nLoading BindingDB_Kd dataset...")
data = DTI(name='BindingDB_Kd')
# Get basic dataset info
full_data = data.get_data()
print(f"\nDataset size: {len(full_data)} drug-target pairs")
print(f"Unique drugs: {full_data['Drug_ID'].nunique()}")
print(f"Unique targets: {full_data['Target_ID'].nunique()}")
# Method 1: Random split
print("\n--- Random Split ---")
split_random = data.get_split(method='random', seed=42)
print(f"Train: {len(split_random['train'])} pairs")
print(f"Valid: {len(split_random['valid'])} pairs")
print(f"Test: {len(split_random['test'])} pairs")
# Method 2: Cold drug split (unseen drugs in test)
print("\n--- Cold Drug Split ---")
split_cold_drug = data.get_split(method='cold_drug', seed=42)
train = split_cold_drug['train']
test = split_cold_drug['test']
# Verify no drug overlap
train_drugs = set(train['Drug_ID'])
test_drugs = set(test['Drug_ID'])
overlap = train_drugs & test_drugs
print(f"Train: {len(train)} pairs, {len(train_drugs)} unique drugs")
print(f"Test: {len(test)} pairs, {len(test_drugs)} unique drugs")
print(f"Drug overlap: {len(overlap)} (should be 0)")
# Method 3: Cold target split (unseen targets in test)
print("\n--- Cold Target Split ---")
split_cold_target = data.get_split(method='cold_target', seed=42)
train = split_cold_target['train']
test = split_cold_target['test']
train_targets = set(train['Target_ID'])
test_targets = set(test['Target_ID'])
overlap = train_targets & test_targets
print(f"Train: {len(train)} pairs, {len(train_targets)} unique targets")
print(f"Test: {len(test)} pairs, {len(test_targets)} unique targets")
print(f"Target overlap: {len(overlap)} (should be 0)")
# Display sample data
print("\nSample DTI data:")
print(full_data.head(3))
return split_cold_drug
def evaluation_example(split):
"""
Example: Evaluating model predictions with TDC evaluators
"""
print("\n" + "=" * 60)
print("Example 3: Model Evaluation")
print("=" * 60)
test = split['test']
# For demonstration, create dummy predictions
# In practice, replace with your model's predictions
import numpy as np
np.random.seed(42)
# Simulate predictions (replace with model.predict(test['Drug']))
y_true = test['Y'].values
y_pred = y_true + np.random.normal(0, 0.5, len(y_true)) # Add noise
# Evaluate with different metrics
print("\nEvaluating predictions...")
# Regression metrics
mae_evaluator = Evaluator(name='MAE')
mae = mae_evaluator(y_true, y_pred)
print(f"MAE: {mae:.4f}")
rmse_evaluator = Evaluator(name='RMSE')
rmse = rmse_evaluator(y_true, y_pred)
print(f"RMSE: {rmse:.4f}")
r2_evaluator = Evaluator(name='R2')
r2 = r2_evaluator(y_true, y_pred)
print(f"R²: {r2:.4f}")
spearman_evaluator = Evaluator(name='Spearman')
spearman = spearman_evaluator(y_true, y_pred)
print(f"Spearman: {spearman:.4f}")
def custom_split_example():
"""
Example: Creating custom splits with different fractions
"""
print("\n" + "=" * 60)
print("Example 4: Custom Split Fractions")
print("=" * 60)
data = ADME(name='HIA_Hou')
# Custom split fractions
custom_fracs = [
([0.6, 0.2, 0.2], "60/20/20 split"),
([0.8, 0.1, 0.1], "80/10/10 split"),
([0.7, 0.15, 0.15], "70/15/15 split")
]
for frac, description in custom_fracs:
split = data.get_split(method='scaffold', seed=42, frac=frac)
print(f"\n{description}:")
print(f" Train: {len(split['train'])} ({frac[0]*100:.0f}%)")
print(f" Valid: {len(split['valid'])} ({frac[1]*100:.0f}%)")
print(f" Test: {len(split['test'])} ({frac[2]*100:.0f}%)")
def main():
"""
Main function to run all examples
"""
print("\n" + "=" * 60)
print("TDC Data Loading and Splitting Examples")
print("=" * 60)
# Example 1: Single prediction with scaffold split
split = load_single_pred_example()
# Example 2: Multi prediction with cold splits
dti_split = load_multi_pred_example()
# Example 3: Model evaluation
evaluation_example(split)
# Example 4: Custom split fractions
custom_split_example()
print("\n" + "=" * 60)
print("Examples completed!")
print("=" * 60)
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,404 @@
#!/usr/bin/env python3
"""
TDC Molecular Generation with Oracles Template
This script demonstrates how to use TDC oracles for molecular generation
tasks including goal-directed generation and distribution learning.
Usage:
python molecular_generation.py
"""
from tdc.generation import MolGen
from tdc import Oracle
import numpy as np
def load_generation_dataset():
"""
Load molecular generation dataset
"""
print("=" * 60)
print("Loading Molecular Generation Dataset")
print("=" * 60)
# Load ChEMBL dataset
data = MolGen(name='ChEMBL_V29')
# Get training molecules
split = data.get_split()
train_smiles = split['train']['Drug'].tolist()
print(f"\nDataset: ChEMBL_V29")
print(f"Training molecules: {len(train_smiles)}")
# Display sample molecules
print("\nSample SMILES:")
for i, smiles in enumerate(train_smiles[:5], 1):
print(f" {i}. {smiles}")
return train_smiles
def single_oracle_example():
"""
Example: Using a single oracle for molecular evaluation
"""
print("\n" + "=" * 60)
print("Example 1: Single Oracle Evaluation")
print("=" * 60)
# Initialize oracle for GSK3B target
oracle = Oracle(name='GSK3B')
# Test molecules
test_molecules = [
'CC(C)Cc1ccc(cc1)C(C)C(O)=O', # Ibuprofen
'CC(=O)Oc1ccccc1C(=O)O', # Aspirin
'Cn1c(=O)c2c(ncn2C)n(C)c1=O', # Caffeine
'CN1C=NC2=C1C(=O)N(C(=O)N2C)C' # Theophylline
]
print("\nEvaluating molecules with GSK3B oracle:")
print("-" * 60)
for smiles in test_molecules:
score = oracle(smiles)
print(f"SMILES: {smiles}")
print(f"GSK3B score: {score:.4f}\n")
def multiple_oracles_example():
"""
Example: Using multiple oracles for multi-objective optimization
"""
print("\n" + "=" * 60)
print("Example 2: Multiple Oracles (Multi-Objective)")
print("=" * 60)
# Initialize multiple oracles
oracles = {
'QED': Oracle(name='QED'), # Drug-likeness
'SA': Oracle(name='SA'), # Synthetic accessibility
'GSK3B': Oracle(name='GSK3B'), # Target binding
'LogP': Oracle(name='LogP') # Lipophilicity
}
# Test molecule
test_smiles = 'CC(C)Cc1ccc(cc1)C(C)C(O)=O'
print(f"\nEvaluating: {test_smiles}")
print("-" * 60)
scores = {}
for name, oracle in oracles.items():
score = oracle(test_smiles)
scores[name] = score
print(f"{name:10s}: {score:.4f}")
# Multi-objective score (weighted combination)
print("\n--- Multi-Objective Scoring ---")
# Invert SA (lower is better, so we invert for maximization)
sa_score = 1.0 / (1.0 + scores['SA'])
# Weighted combination
weights = {'QED': 0.3, 'SA': 0.2, 'GSK3B': 0.4, 'LogP': 0.1}
multi_score = (
weights['QED'] * scores['QED'] +
weights['SA'] * sa_score +
weights['GSK3B'] * scores['GSK3B'] +
weights['LogP'] * (scores['LogP'] / 5.0) # Normalize LogP
)
print(f"Multi-objective score: {multi_score:.4f}")
print(f"Weights: {weights}")
def batch_evaluation_example():
"""
Example: Batch evaluation of multiple molecules
"""
print("\n" + "=" * 60)
print("Example 3: Batch Evaluation")
print("=" * 60)
# Generate sample molecules
molecules = [
'CC(C)Cc1ccc(cc1)C(C)C(O)=O',
'CC(=O)Oc1ccccc1C(=O)O',
'Cn1c(=O)c2c(ncn2C)n(C)c1=O',
'CN1C=NC2=C1C(=O)N(C(=O)N2C)C',
'CC(C)NCC(COc1ccc(cc1)COCCOC(C)C)O'
]
# Initialize oracle
oracle = Oracle(name='DRD2')
print(f"\nBatch evaluating {len(molecules)} molecules with DRD2 oracle...")
# Batch evaluation (more efficient than individual calls)
scores = oracle(molecules)
print("\nResults:")
print("-" * 60)
for smiles, score in zip(molecules, scores):
print(f"{smiles[:40]:40s}... Score: {score:.4f}")
# Statistics
print(f"\nStatistics:")
print(f" Mean score: {np.mean(scores):.4f}")
print(f" Std score: {np.std(scores):.4f}")
print(f" Min score: {np.min(scores):.4f}")
print(f" Max score: {np.max(scores):.4f}")
def goal_directed_generation_template():
"""
Template for goal-directed molecular generation
"""
print("\n" + "=" * 60)
print("Example 4: Goal-Directed Generation Template")
print("=" * 60)
template = '''
# Template for goal-directed molecular generation
from tdc.generation import MolGen
from tdc import Oracle
import numpy as np
# 1. Load training data
data = MolGen(name='ChEMBL_V29')
train_smiles = data.get_split()['train']['Drug'].tolist()
# 2. Initialize oracle(s)
oracle = Oracle(name='GSK3B')
# 3. Initialize your generative model
# model = YourGenerativeModel()
# model.fit(train_smiles)
# 4. Generation loop
num_iterations = 100
num_molecules_per_iter = 100
best_molecules = []
for iteration in range(num_iterations):
# Generate candidate molecules
# candidates = model.generate(num_molecules_per_iter)
# Evaluate with oracle
scores = oracle(candidates)
# Select top molecules
top_indices = np.argsort(scores)[-10:]
top_molecules = [candidates[i] for i in top_indices]
top_scores = [scores[i] for i in top_indices]
# Store best molecules
best_molecules.extend(zip(top_molecules, top_scores))
# Optional: Fine-tune model on top molecules
# model.fine_tune(top_molecules)
# Print progress
print(f"Iteration {iteration}: Best score = {max(scores):.4f}")
# Sort and display top molecules
best_molecules.sort(key=lambda x: x[1], reverse=True)
print("\\nTop 10 molecules:")
for smiles, score in best_molecules[:10]:
print(f"{smiles}: {score:.4f}")
'''
print("\nGoal-Directed Generation Template:")
print("=" * 60)
print(template)
def distribution_learning_example(train_smiles):
"""
Example: Distribution learning evaluation
"""
print("\n" + "=" * 60)
print("Example 5: Distribution Learning")
print("=" * 60)
# Use subset for demonstration
train_subset = train_smiles[:1000]
# Initialize oracle
oracle = Oracle(name='QED')
print("\nEvaluating property distribution...")
# Evaluate training set
print("Computing training set distribution...")
train_scores = oracle(train_subset)
# Simulate generated molecules (in practice, use your generative model)
# For demo: add noise to training molecules
print("Computing generated set distribution...")
generated_scores = train_scores + np.random.normal(0, 0.1, len(train_scores))
generated_scores = np.clip(generated_scores, 0, 1) # QED is [0, 1]
# Compare distributions
print("\n--- Distribution Statistics ---")
print(f"Training set (n={len(train_subset)}):")
print(f" Mean: {np.mean(train_scores):.4f}")
print(f" Std: {np.std(train_scores):.4f}")
print(f" Median: {np.median(train_scores):.4f}")
print(f"\nGenerated set (n={len(generated_scores)}):")
print(f" Mean: {np.mean(generated_scores):.4f}")
print(f" Std: {np.std(generated_scores):.4f}")
print(f" Median: {np.median(generated_scores):.4f}")
# Distribution similarity metrics
from scipy.stats import ks_2samp
ks_statistic, p_value = ks_2samp(train_scores, generated_scores)
print(f"\nKolmogorov-Smirnov Test:")
print(f" KS statistic: {ks_statistic:.4f}")
print(f" P-value: {p_value:.4f}")
if p_value > 0.05:
print(" → Distributions are similar (p > 0.05)")
else:
print(" → Distributions are significantly different (p < 0.05)")
def available_oracles_info():
"""
Display information about available oracles
"""
print("\n" + "=" * 60)
print("Example 6: Available Oracles")
print("=" * 60)
oracle_info = {
'Biochemical Targets': [
'DRD2', 'GSK3B', 'JNK3', '5HT2A', 'ACE',
'MAPK', 'CDK', 'P38', 'PARP1', 'PIK3CA'
],
'Physicochemical Properties': [
'QED', 'SA', 'LogP', 'MW', 'Lipinski'
],
'Composite Metrics': [
'Isomer_Meta', 'Median1', 'Median2',
'Rediscovery', 'Similarity', 'Uniqueness', 'Novelty'
],
'Specialized': [
'ASKCOS', 'Docking', 'Vina'
]
}
print("\nAvailable Oracle Categories:")
print("-" * 60)
for category, oracles in oracle_info.items():
print(f"\n{category}:")
for oracle_name in oracles:
print(f" - {oracle_name}")
print("\nFor detailed oracle documentation, see:")
print(" references/oracles.md")
def constraint_satisfaction_example():
"""
Example: Molecular generation with constraints
"""
print("\n" + "=" * 60)
print("Example 7: Constraint Satisfaction")
print("=" * 60)
# Define constraints
constraints = {
'QED': (0.5, 1.0), # Drug-likeness >= 0.5
'SA': (1.0, 5.0), # Easy to synthesize
'MW': (200, 500), # Molecular weight 200-500 Da
'LogP': (0, 3) # Lipophilicity 0-3
}
# Initialize oracles
oracles = {name: Oracle(name=name) for name in constraints.keys()}
# Test molecules
test_molecules = [
'CC(C)Cc1ccc(cc1)C(C)C(O)=O',
'CC(=O)Oc1ccccc1C(=O)O',
'Cn1c(=O)c2c(ncn2C)n(C)c1=O'
]
print("\nConstraints:")
for prop, (min_val, max_val) in constraints.items():
print(f" {prop}: [{min_val}, {max_val}]")
print("\n" + "-" * 60)
print("Evaluating molecules against constraints:")
print("-" * 60)
for smiles in test_molecules:
print(f"\nSMILES: {smiles}")
satisfies_all = True
for prop, (min_val, max_val) in constraints.items():
score = oracles[prop](smiles)
satisfies = min_val <= score <= max_val
status = "" if satisfies else ""
print(f" {prop:10s}: {score:7.2f} [{min_val:5.1f}, {max_val:5.1f}] {status}")
satisfies_all = satisfies_all and satisfies
result = "PASS" if satisfies_all else "FAIL"
print(f" Overall: {result}")
def main():
"""
Main function to run all molecular generation examples
"""
print("\n" + "=" * 60)
print("TDC Molecular Generation with Oracles Examples")
print("=" * 60)
# Load generation dataset
train_smiles = load_generation_dataset()
# Example 1: Single oracle
single_oracle_example()
# Example 2: Multiple oracles
multiple_oracles_example()
# Example 3: Batch evaluation
batch_evaluation_example()
# Example 4: Goal-directed generation template
goal_directed_generation_template()
# Example 5: Distribution learning
distribution_learning_example(train_smiles)
# Example 6: Available oracles
available_oracles_info()
# Example 7: Constraint satisfaction
constraint_satisfaction_example()
print("\n" + "=" * 60)
print("Molecular generation examples completed!")
print("=" * 60)
print("\nNext steps:")
print("1. Implement your generative model")
print("2. Use oracles to guide generation")
print("3. Evaluate generated molecules")
print("4. Iterate and optimize")
print("=" * 60)
if __name__ == "__main__":
main()