Initial commit

This commit is contained in:
Zhongwei Li
2025-11-30 08:30:10 +08:00
commit f0bd18fb4e
824 changed files with 331919 additions and 0 deletions

454
skills/pytdc/SKILL.md Normal file
View File

@@ -0,0 +1,454 @@
---
name: pytdc
description: "Therapeutics Data Commons. AI-ready drug discovery datasets (ADME, toxicity, DTI), benchmarks, scaffold splits, molecular oracles, for therapeutic ML and pharmacological prediction."
---
# PyTDC (Therapeutics Data Commons)
## Overview
PyTDC is an open-science platform providing AI-ready datasets and benchmarks for drug discovery and development. Access curated datasets spanning the entire therapeutics pipeline with standardized evaluation metrics and meaningful data splits, organized into three categories: single-instance prediction (molecular/protein properties), multi-instance prediction (drug-target interactions, DDI), and generation (molecule generation, retrosynthesis).
## When to Use This Skill
This skill should be used when:
- Working with drug discovery or therapeutic ML datasets
- Benchmarking machine learning models on standardized pharmaceutical tasks
- Predicting molecular properties (ADME, toxicity, bioactivity)
- Predicting drug-target or drug-drug interactions
- Generating novel molecules with desired properties
- Accessing curated datasets with proper train/test splits (scaffold, cold-split)
- Using molecular oracles for property optimization
## Installation & Setup
Install PyTDC using pip:
```bash
uv pip install PyTDC
```
To upgrade to the latest version:
```bash
uv pip install PyTDC --upgrade
```
Core dependencies (automatically installed):
- numpy, pandas, tqdm, seaborn, scikit_learn, fuzzywuzzy
Additional packages are installed automatically as needed for specific features.
## Quick Start
The basic pattern for accessing any TDC dataset follows this structure:
```python
from tdc.<problem> import <Task>
data = <Task>(name='<Dataset>')
split = data.get_split(method='scaffold', seed=1, frac=[0.7, 0.1, 0.2])
df = data.get_data(format='df')
```
Where:
- `<problem>`: One of `single_pred`, `multi_pred`, or `generation`
- `<Task>`: Specific task category (e.g., ADME, DTI, MolGen)
- `<Dataset>`: Dataset name within that task
**Example - Loading ADME data:**
```python
from tdc.single_pred import ADME
data = ADME(name='Caco2_Wang')
split = data.get_split(method='scaffold')
# Returns dict with 'train', 'valid', 'test' DataFrames
```
## Single-Instance Prediction Tasks
Single-instance prediction involves forecasting properties of individual biomedical entities (molecules, proteins, etc.).
### Available Task Categories
#### 1. ADME (Absorption, Distribution, Metabolism, Excretion)
Predict pharmacokinetic properties of drug molecules.
```python
from tdc.single_pred import ADME
data = ADME(name='Caco2_Wang') # Intestinal permeability
# Other datasets: HIA_Hou, Bioavailability_Ma, Lipophilicity_AstraZeneca, etc.
```
**Common ADME datasets:**
- Caco2 - Intestinal permeability
- HIA - Human intestinal absorption
- Bioavailability - Oral bioavailability
- Lipophilicity - Octanol-water partition coefficient
- Solubility - Aqueous solubility
- BBB - Blood-brain barrier penetration
- CYP - Cytochrome P450 metabolism
#### 2. Toxicity (Tox)
Predict toxicity and adverse effects of compounds.
```python
from tdc.single_pred import Tox
data = Tox(name='hERG') # Cardiotoxicity
# Other datasets: AMES, DILI, Carcinogens_Lagunin, etc.
```
**Common toxicity datasets:**
- hERG - Cardiac toxicity
- AMES - Mutagenicity
- DILI - Drug-induced liver injury
- Carcinogens - Carcinogenicity
- ClinTox - Clinical trial toxicity
#### 3. HTS (High-Throughput Screening)
Bioactivity predictions from screening data.
```python
from tdc.single_pred import HTS
data = HTS(name='SARSCoV2_Vitro_Touret')
```
#### 4. QM (Quantum Mechanics)
Quantum mechanical properties of molecules.
```python
from tdc.single_pred import QM
data = QM(name='QM7')
```
#### 5. Other Single Prediction Tasks
- **Yields**: Chemical reaction yield prediction
- **Epitope**: Epitope prediction for biologics
- **Develop**: Development-stage predictions
- **CRISPROutcome**: Gene editing outcome prediction
### Data Format
Single prediction datasets typically return DataFrames with columns:
- `Drug_ID` or `Compound_ID`: Unique identifier
- `Drug` or `X`: SMILES string or molecular representation
- `Y`: Target label (continuous or binary)
## Multi-Instance Prediction Tasks
Multi-instance prediction involves forecasting properties of interactions between multiple biomedical entities.
### Available Task Categories
#### 1. DTI (Drug-Target Interaction)
Predict binding affinity between drugs and protein targets.
```python
from tdc.multi_pred import DTI
data = DTI(name='BindingDB_Kd')
split = data.get_split()
```
**Available datasets:**
- BindingDB_Kd - Dissociation constant (52,284 pairs)
- BindingDB_IC50 - Half-maximal inhibitory concentration (991,486 pairs)
- BindingDB_Ki - Inhibition constant (375,032 pairs)
- DAVIS, KIBA - Kinase binding datasets
**Data format:** Drug_ID, Target_ID, Drug (SMILES), Target (sequence), Y (binding affinity)
#### 2. DDI (Drug-Drug Interaction)
Predict interactions between drug pairs.
```python
from tdc.multi_pred import DDI
data = DDI(name='DrugBank')
split = data.get_split()
```
Multi-class classification task predicting interaction types. Dataset contains 191,808 DDI pairs with 1,706 drugs.
#### 3. PPI (Protein-Protein Interaction)
Predict protein-protein interactions.
```python
from tdc.multi_pred import PPI
data = PPI(name='HuRI')
```
#### 4. Other Multi-Prediction Tasks
- **GDA**: Gene-disease associations
- **DrugRes**: Drug resistance prediction
- **DrugSyn**: Drug synergy prediction
- **PeptideMHC**: Peptide-MHC binding
- **AntibodyAff**: Antibody affinity prediction
- **MTI**: miRNA-target interactions
- **Catalyst**: Catalyst prediction
- **TrialOutcome**: Clinical trial outcome prediction
## Generation Tasks
Generation tasks involve creating novel biomedical entities with desired properties.
### 1. Molecular Generation (MolGen)
Generate diverse, novel molecules with desirable chemical properties.
```python
from tdc.generation import MolGen
data = MolGen(name='ChEMBL_V29')
split = data.get_split()
```
Use with oracles to optimize for specific properties:
```python
from tdc import Oracle
oracle = Oracle(name='GSK3B')
score = oracle('CC(C)Cc1ccc(cc1)C(C)C(O)=O') # Evaluate SMILES
```
See `references/oracles.md` for all available oracle functions.
### 2. Retrosynthesis (RetroSyn)
Predict reactants needed to synthesize a target molecule.
```python
from tdc.generation import RetroSyn
data = RetroSyn(name='USPTO')
split = data.get_split()
```
Dataset contains 1,939,253 reactions from USPTO database.
### 3. Paired Molecule Generation
Generate molecule pairs (e.g., prodrug-drug pairs).
```python
from tdc.generation import PairMolGen
data = PairMolGen(name='Prodrug')
```
For detailed oracle documentation and molecular generation workflows, refer to `references/oracles.md` and `scripts/molecular_generation.py`.
## Benchmark Groups
Benchmark groups provide curated collections of related datasets for systematic model evaluation.
### ADMET Benchmark Group
```python
from tdc.benchmark_group import admet_group
group = admet_group(path='data/')
# Get benchmark datasets
benchmark = group.get('Caco2_Wang')
predictions = {}
for seed in [1, 2, 3, 4, 5]:
train, valid = benchmark['train'], benchmark['valid']
# Train model here
predictions[seed] = model.predict(benchmark['test'])
# Evaluate with required 5 seeds
results = group.evaluate(predictions)
```
**ADMET Group includes 22 datasets** covering absorption, distribution, metabolism, excretion, and toxicity.
### Other Benchmark Groups
Available benchmark groups include collections for:
- ADMET properties
- Drug-target interactions
- Drug combination prediction
- And more specialized therapeutic tasks
For benchmark evaluation workflows, see `scripts/benchmark_evaluation.py`.
## Data Functions
TDC provides comprehensive data processing utilities organized into four categories.
### 1. Dataset Splits
Retrieve train/validation/test partitions with various strategies:
```python
# Scaffold split (default for most tasks)
split = data.get_split(method='scaffold', seed=1, frac=[0.7, 0.1, 0.2])
# Random split
split = data.get_split(method='random', seed=42, frac=[0.8, 0.1, 0.1])
# Cold split (for DTI/DDI tasks)
split = data.get_split(method='cold_drug', seed=1) # Unseen drugs in test
split = data.get_split(method='cold_target', seed=1) # Unseen targets in test
```
**Available split strategies:**
- `random`: Random shuffling
- `scaffold`: Scaffold-based (for chemical diversity)
- `cold_drug`, `cold_target`, `cold_drug_target`: For DTI tasks
- `temporal`: Time-based splits for temporal datasets
### 2. Model Evaluation
Use standardized metrics for evaluation:
```python
from tdc import Evaluator
# For binary classification
evaluator = Evaluator(name='ROC-AUC')
score = evaluator(y_true, y_pred)
# For regression
evaluator = Evaluator(name='RMSE')
score = evaluator(y_true, y_pred)
```
**Available metrics:** ROC-AUC, PR-AUC, F1, Accuracy, RMSE, MAE, R2, Spearman, Pearson, and more.
### 3. Data Processing
TDC provides 11 key processing utilities:
```python
from tdc.chem_utils import MolConvert
# Molecule format conversion
converter = MolConvert(src='SMILES', dst='PyG')
pyg_graph = converter('CC(C)Cc1ccc(cc1)C(C)C(O)=O')
```
**Processing utilities include:**
- Molecule format conversion (SMILES, SELFIES, PyG, DGL, ECFP, etc.)
- Molecule filters (PAINS, drug-likeness)
- Label binarization and unit conversion
- Data balancing (over/under-sampling)
- Negative sampling for pair data
- Graph transformation
- Entity retrieval (CID to SMILES, UniProt to sequence)
For comprehensive utilities documentation, see `references/utilities.md`.
### 4. Molecule Generation Oracles
TDC provides 17+ oracle functions for molecular optimization:
```python
from tdc import Oracle
# Single oracle
oracle = Oracle(name='DRD2')
score = oracle('CC(C)Cc1ccc(cc1)C(C)C(O)=O')
# Multiple oracles
oracle = Oracle(name='JNK3')
scores = oracle(['SMILES1', 'SMILES2', 'SMILES3'])
```
For complete oracle documentation, see `references/oracles.md`.
## Advanced Features
### Retrieve Available Datasets
```python
from tdc.utils import retrieve_dataset_names
# Get all ADME datasets
adme_datasets = retrieve_dataset_names('ADME')
# Get all DTI datasets
dti_datasets = retrieve_dataset_names('DTI')
```
### Label Transformations
```python
# Get label mapping
label_map = data.get_label_map(name='DrugBank')
# Convert labels
from tdc.chem_utils import label_transform
transformed = label_transform(y, from_unit='nM', to_unit='p')
```
### Database Queries
```python
from tdc.utils import cid2smiles, uniprot2seq
# Convert PubChem CID to SMILES
smiles = cid2smiles(2244)
# Convert UniProt ID to amino acid sequence
sequence = uniprot2seq('P12345')
```
## Common Workflows
### Workflow 1: Train a Single Prediction Model
See `scripts/load_and_split_data.py` for a complete example:
```python
from tdc.single_pred import ADME
from tdc import Evaluator
# Load data
data = ADME(name='Caco2_Wang')
split = data.get_split(method='scaffold', seed=42)
train, valid, test = split['train'], split['valid'], split['test']
# Train model (user implements)
# model.fit(train['Drug'], train['Y'])
# Evaluate
evaluator = Evaluator(name='MAE')
# score = evaluator(test['Y'], predictions)
```
### Workflow 2: Benchmark Evaluation
See `scripts/benchmark_evaluation.py` for a complete example with multiple seeds and proper evaluation protocol.
### Workflow 3: Molecular Generation with Oracles
See `scripts/molecular_generation.py` for an example of goal-directed generation using oracle functions.
## Resources
This skill includes bundled resources for common TDC workflows:
### scripts/
- `load_and_split_data.py`: Template for loading and splitting TDC datasets with various strategies
- `benchmark_evaluation.py`: Template for running benchmark group evaluations with proper 5-seed protocol
- `molecular_generation.py`: Template for molecular generation using oracle functions
### references/
- `datasets.md`: Comprehensive catalog of all available datasets organized by task type
- `oracles.md`: Complete documentation of all 17+ molecule generation oracles
- `utilities.md`: Detailed guide to data processing, splitting, and evaluation utilities
## Additional Resources
- **Official Website**: https://tdcommons.ai
- **Documentation**: https://tdc.readthedocs.io
- **GitHub**: https://github.com/mims-harvard/TDC
- **Paper**: NeurIPS 2021 - "Therapeutics Data Commons: Machine Learning Datasets and Tasks for Drug Discovery and Development"

View File

@@ -0,0 +1,246 @@
# TDC Datasets Comprehensive Catalog
This document provides a comprehensive catalog of all available datasets in the Therapeutics Data Commons, organized by task category.
## Single-Instance Prediction Datasets
### ADME (Absorption, Distribution, Metabolism, Excretion)
**Absorption:**
- `Caco2_Wang` - Caco-2 cell permeability (906 compounds)
- `Caco2_AstraZeneca` - Caco-2 permeability from AstraZeneca (700 compounds)
- `HIA_Hou` - Human intestinal absorption (578 compounds)
- `Pgp_Broccatelli` - P-glycoprotein inhibition (1,212 compounds)
- `Bioavailability_Ma` - Oral bioavailability (640 compounds)
- `F20_edrug3d` - Oral bioavailability F>=20% (1,017 compounds)
- `F30_edrug3d` - Oral bioavailability F>=30% (1,017 compounds)
**Distribution:**
- `BBB_Martins` - Blood-brain barrier penetration (1,975 compounds)
- `PPBR_AZ` - Plasma protein binding rate (1,797 compounds)
- `VDss_Lombardo` - Volume of distribution at steady state (1,130 compounds)
**Metabolism:**
- `CYP2C19_Veith` - CYP2C19 inhibition (12,665 compounds)
- `CYP2D6_Veith` - CYP2D6 inhibition (13,130 compounds)
- `CYP3A4_Veith` - CYP3A4 inhibition (12,328 compounds)
- `CYP1A2_Veith` - CYP1A2 inhibition (12,579 compounds)
- `CYP2C9_Veith` - CYP2C9 inhibition (12,092 compounds)
- `CYP2C9_Substrate_CarbonMangels` - CYP2C9 substrate (666 compounds)
- `CYP2D6_Substrate_CarbonMangels` - CYP2D6 substrate (664 compounds)
- `CYP3A4_Substrate_CarbonMangels` - CYP3A4 substrate (667 compounds)
**Excretion:**
- `Half_Life_Obach` - Half-life (667 compounds)
- `Clearance_Hepatocyte_AZ` - Hepatocyte clearance (1,020 compounds)
- `Clearance_Microsome_AZ` - Microsome clearance (1,102 compounds)
**Solubility & Lipophilicity:**
- `Solubility_AqSolDB` - Aqueous solubility (9,982 compounds)
- `Lipophilicity_AstraZeneca` - Lipophilicity (logD) (4,200 compounds)
- `HydrationFreeEnergy_FreeSolv` - Hydration free energy (642 compounds)
### Toxicity
**Organ Toxicity:**
- `hERG` - hERG channel inhibition/cardiotoxicity (648 compounds)
- `hERG_Karim` - hERG blockers extended dataset (13,445 compounds)
- `DILI` - Drug-induced liver injury (475 compounds)
- `Skin_Reaction` - Skin reaction (404 compounds)
- `Carcinogens_Lagunin` - Carcinogenicity (278 compounds)
- `Respiratory_Toxicity` - Respiratory toxicity (278 compounds)
**General Toxicity:**
- `AMES` - Ames mutagenicity (7,255 compounds)
- `LD50_Zhu` - Acute toxicity LD50 (7,385 compounds)
- `ClinTox` - Clinical trial toxicity (1,478 compounds)
- `SkinSensitization` - Skin sensitization (278 compounds)
- `EyeCorrosion` - Eye corrosion (278 compounds)
- `EyeIrritation` - Eye irritation (278 compounds)
**Environmental Toxicity:**
- `Tox21-AhR` - Nuclear receptor signaling (8,169 compounds)
- `Tox21-AR` - Androgen receptor (9,362 compounds)
- `Tox21-AR-LBD` - Androgen receptor ligand binding (8,343 compounds)
- `Tox21-ARE` - Antioxidant response element (6,475 compounds)
- `Tox21-aromatase` - Aromatase inhibition (6,733 compounds)
- `Tox21-ATAD5` - DNA damage (8,163 compounds)
- `Tox21-ER` - Estrogen receptor (7,257 compounds)
- `Tox21-ER-LBD` - Estrogen receptor ligand binding (8,163 compounds)
- `Tox21-HSE` - Heat shock response (8,162 compounds)
- `Tox21-MMP` - Mitochondrial membrane potential (7,394 compounds)
- `Tox21-p53` - p53 pathway (8,163 compounds)
- `Tox21-PPAR-gamma` - PPAR gamma activation (7,396 compounds)
### HTS (High-Throughput Screening)
**SARS-CoV-2:**
- `SARSCoV2_Vitro_Touret` - In vitro antiviral activity (1,484 compounds)
- `SARSCoV2_3CLPro_Diamond` - 3CL protease inhibition (879 compounds)
- `SARSCoV2_Vitro_AlabdulKareem` - In vitro screening (5,953 compounds)
**Other Targets:**
- `Orexin1_Receptor_Butkiewicz` - Orexin receptor screening (4,675 compounds)
- `M1_Receptor_Agonist_Butkiewicz` - M1 receptor agonist (1,700 compounds)
- `M1_Receptor_Antagonist_Butkiewicz` - M1 receptor antagonist (1,700 compounds)
- `HIV_Butkiewicz` - HIV inhibition (40,000+ compounds)
- `ToxCast` - Environmental chemical screening (8,597 compounds)
### QM (Quantum Mechanics)
- `QM7` - Quantum mechanics properties (7,160 molecules)
- `QM8` - Electronic spectra and excited states (21,786 molecules)
- `QM9` - Geometric, energetic, electronic, thermodynamic properties (133,885 molecules)
### Yields
- `Buchwald-Hartwig` - Reaction yield prediction (3,955 reactions)
- `USPTO_Yields` - Yield prediction from USPTO (853,879 reactions)
### Epitope
- `IEDBpep-DiseaseBinder` - Disease-associated epitope binding (6,080 peptides)
- `IEDBpep-NonBinder` - Non-binding peptides (24,320 peptides)
### Develop (Development)
- `Manufacturing` - Manufacturing success prediction
- `Formulation` - Formulation stability
### CRISPROutcome
- `CRISPROutcome_Doench` - Gene editing efficiency prediction (5,310 guide RNAs)
## Multi-Instance Prediction Datasets
### DTI (Drug-Target Interaction)
**Binding Affinity:**
- `BindingDB_Kd` - Dissociation constant (52,284 pairs, 10,665 drugs, 1,413 proteins)
- `BindingDB_IC50` - Half-maximal inhibitory concentration (991,486 pairs, 549,205 drugs, 5,078 proteins)
- `BindingDB_Ki` - Inhibition constant (375,032 pairs, 174,662 drugs, 3,070 proteins)
**Kinase Binding:**
- `DAVIS` - Davis kinase binding dataset (30,056 pairs, 68 drugs, 442 proteins)
- `KIBA` - KIBA kinase binding dataset (118,254 pairs, 2,111 drugs, 229 proteins)
**Binary Interaction:**
- `BindingDB_Patent` - Patent-derived DTI (8,503 pairs)
- `BindingDB_Approval` - FDA-approved drug DTI (1,649 pairs)
### DDI (Drug-Drug Interaction)
- `DrugBank` - Drug-drug interactions (191,808 pairs, 1,706 drugs)
- `TWOSIDES` - Side effect-based DDI (4,649,441 pairs, 645 drugs)
### PPI (Protein-Protein Interaction)
- `HuRI` - Human reference protein interactome (52,569 interactions)
- `STRING` - Protein functional associations (19,247 interactions)
### GDA (Gene-Disease Association)
- `DisGeNET` - Gene-disease associations (81,746 pairs)
- `PrimeKG_GDA` - Gene-disease from PrimeKG knowledge graph
### DrugRes (Drug Response/Resistance)
- `GDSC1` - Genomics of Drug Sensitivity in Cancer v1 (178,000 pairs)
- `GDSC2` - Genomics of Drug Sensitivity in Cancer v2 (125,000 pairs)
### DrugSyn (Drug Synergy)
- `DrugComb` - Drug combination synergy (345,502 combinations)
- `DrugCombDB` - Drug combination database (448,555 combinations)
- `OncoPolyPharmacology` - Oncology drug combinations (22,737 combinations)
### PeptideMHC
- `MHC1_NetMHCpan` - MHC class I binding (184,983 pairs)
- `MHC2_NetMHCIIpan` - MHC class II binding (134,281 pairs)
### AntibodyAff (Antibody Affinity)
- `Protein_SAbDab` - Antibody-antigen affinity (1,500+ pairs)
### MTI (miRNA-Target Interaction)
- `miRTarBase` - Experimentally validated miRNA-target interactions (380,639 pairs)
### Catalyst
- `USPTO_Catalyst` - Catalyst prediction for reactions (11,000+ reactions)
### TrialOutcome
- `TrialOutcome_WuXi` - Clinical trial outcome prediction (3,769 trials)
## Generation Datasets
### MolGen (Molecular Generation)
- `ChEMBL_V29` - Drug-like molecules from ChEMBL (1,941,410 molecules)
- `ZINC` - ZINC database subset (100,000+ molecules)
- `GuacaMol` - Goal-directed benchmark molecules
- `Moses` - Molecular sets benchmark (1,936,962 molecules)
### RetroSyn (Retrosynthesis)
- `USPTO` - Retrosynthesis from USPTO patents (1,939,253 reactions)
- `USPTO-50K` - Curated USPTO subset (50,000 reactions)
### PairMolGen (Paired Molecule Generation)
- `Prodrug` - Prodrug to drug transformations (1,000+ pairs)
- `Metabolite` - Drug to metabolite transformations
## Using retrieve_dataset_names
To programmatically access all available datasets for a specific task:
```python
from tdc.utils import retrieve_dataset_names
# Get all datasets for a specific task
adme_datasets = retrieve_dataset_names('ADME')
tox_datasets = retrieve_dataset_names('Tox')
dti_datasets = retrieve_dataset_names('DTI')
hts_datasets = retrieve_dataset_names('HTS')
```
## Dataset Statistics
Access dataset statistics directly:
```python
from tdc.single_pred import ADME
data = ADME(name='Caco2_Wang')
# Print basic statistics
data.print_stats()
# Get label distribution
data.label_distribution()
```
## Loading Datasets
All datasets follow the same loading pattern:
```python
from tdc.<problem_type> import <TaskType>
data = <TaskType>(name='<DatasetName>')
# Get full dataset
df = data.get_data(format='df') # or 'dict', 'DeepPurpose', etc.
# Get train/valid/test split
split = data.get_split(method='scaffold', seed=1, frac=[0.7, 0.1, 0.2])
```
## Notes
- Dataset sizes and statistics are approximate and may be updated
- New datasets are regularly added to TDC
- Some datasets may require additional dependencies
- Check the official TDC website for the most up-to-date dataset list: https://tdcommons.ai/overview/

View File

@@ -0,0 +1,400 @@
# TDC Molecule Generation Oracles
Oracles are functions that evaluate the quality of generated molecules across specific dimensions. TDC provides 17+ oracle functions for molecular optimization tasks in de novo drug design.
## Overview
Oracles measure molecular properties and serve two main purposes:
1. **Goal-Directed Generation**: Optimize molecules to maximize/minimize specific properties
2. **Distribution Learning**: Evaluate whether generated molecules match desired property distributions
## Using Oracles
### Basic Usage
```python
from tdc import Oracle
# Initialize oracle
oracle = Oracle(name='GSK3B')
# Evaluate single molecule (SMILES string)
score = oracle('CC(C)Cc1ccc(cc1)C(C)C(O)=O')
# Evaluate multiple molecules
scores = oracle(['SMILES1', 'SMILES2', 'SMILES3'])
```
### Oracle Categories
TDC oracles are organized into several categories based on the molecular property being evaluated.
## Biochemical Oracles
Predict binding affinity or activity against biological targets.
### Target-Specific Oracles
**DRD2 - Dopamine Receptor D2**
```python
oracle = Oracle(name='DRD2')
score = oracle(smiles)
```
- Measures binding affinity to DRD2 receptor
- Important for neurological and psychiatric drug development
- Higher scores indicate stronger binding
**GSK3B - Glycogen Synthase Kinase-3 Beta**
```python
oracle = Oracle(name='GSK3B')
score = oracle(smiles)
```
- Predicts GSK3β inhibition
- Relevant for Alzheimer's, diabetes, and cancer research
- Higher scores indicate better inhibition
**JNK3 - c-Jun N-terminal Kinase 3**
```python
oracle = Oracle(name='JNK3')
score = oracle(smiles)
```
- Measures JNK3 kinase inhibition
- Target for neurodegenerative diseases
- Higher scores indicate stronger inhibition
**5HT2A - Serotonin 2A Receptor**
```python
oracle = Oracle(name='5HT2A')
score = oracle(smiles)
```
- Predicts serotonin receptor binding
- Important for psychiatric medications
- Higher scores indicate stronger binding
**ACE - Angiotensin-Converting Enzyme**
```python
oracle = Oracle(name='ACE')
score = oracle(smiles)
```
- Measures ACE inhibition
- Target for hypertension treatment
- Higher scores indicate better inhibition
**MAPK - Mitogen-Activated Protein Kinase**
```python
oracle = Oracle(name='MAPK')
score = oracle(smiles)
```
- Predicts MAPK inhibition
- Target for cancer and inflammatory diseases
**CDK - Cyclin-Dependent Kinase**
```python
oracle = Oracle(name='CDK')
score = oracle(smiles)
```
- Measures CDK inhibition
- Important for cancer drug development
**P38 - p38 MAP Kinase**
```python
oracle = Oracle(name='P38')
score = oracle(smiles)
```
- Predicts p38 MAPK inhibition
- Target for inflammatory diseases
**PARP1 - Poly (ADP-ribose) Polymerase 1**
```python
oracle = Oracle(name='PARP1')
score = oracle(smiles)
```
- Measures PARP1 inhibition
- Target for cancer treatment (DNA repair mechanism)
**PIK3CA - Phosphatidylinositol-4,5-Bisphosphate 3-Kinase**
```python
oracle = Oracle(name='PIK3CA')
score = oracle(smiles)
```
- Predicts PIK3CA inhibition
- Important target in oncology
## Physicochemical Oracles
Evaluate drug-like properties and ADME characteristics.
### Drug-Likeness Oracles
**QED - Quantitative Estimate of Drug-likeness**
```python
oracle = Oracle(name='QED')
score = oracle(smiles)
```
- Combines multiple physicochemical properties
- Score ranges from 0 (non-drug-like) to 1 (drug-like)
- Based on Bickerton et al. criteria
**Lipinski - Rule of Five**
```python
oracle = Oracle(name='Lipinski')
score = oracle(smiles)
```
- Number of Lipinski rule violations
- Rules: MW ≤ 500, logP ≤ 5, HBD ≤ 5, HBA ≤ 10
- Score of 0 means fully compliant
### Molecular Properties
**SA - Synthetic Accessibility**
```python
oracle = Oracle(name='SA')
score = oracle(smiles)
```
- Estimates ease of synthesis
- Score ranges from 1 (easy) to 10 (difficult)
- Lower scores indicate easier synthesis
**LogP - Octanol-Water Partition Coefficient**
```python
oracle = Oracle(name='LogP')
score = oracle(smiles)
```
- Measures lipophilicity
- Important for membrane permeability
- Typical drug-like range: 0-5
**MW - Molecular Weight**
```python
oracle = Oracle(name='MW')
score = oracle(smiles)
```
- Returns molecular weight in Daltons
- Drug-like range typically 150-500 Da
## Composite Oracles
Combine multiple properties for multi-objective optimization.
**Isomer Meta**
```python
oracle = Oracle(name='Isomer_Meta')
score = oracle(smiles)
```
- Evaluates specific isomeric properties
- Used for stereochemistry optimization
**Median Molecules**
```python
oracle = Oracle(name='Median1', 'Median2')
score = oracle(smiles)
```
- Tests ability to generate molecules with median properties
- Useful for distribution learning benchmarks
**Rediscovery**
```python
oracle = Oracle(name='Rediscovery')
score = oracle(smiles)
```
- Measures similarity to known reference molecules
- Tests ability to regenerate existing drugs
**Similarity**
```python
oracle = Oracle(name='Similarity')
score = oracle(smiles)
```
- Computes structural similarity to target molecules
- Based on molecular fingerprints (typically Tanimoto similarity)
**Uniqueness**
```python
oracle = Oracle(name='Uniqueness')
scores = oracle(smiles_list)
```
- Measures diversity in generated molecule set
- Returns fraction of unique molecules
**Novelty**
```python
oracle = Oracle(name='Novelty')
scores = oracle(smiles_list, training_set)
```
- Measures how different generated molecules are from training set
- Higher scores indicate more novel structures
## Specialized Oracles
**ASKCOS - Retrosynthesis Scoring**
```python
oracle = Oracle(name='ASKCOS')
score = oracle(smiles)
```
- Evaluates synthetic feasibility using retrosynthesis
- Requires ASKCOS backend (IBM RXN)
- Scores based on retrosynthetic route availability
**Docking Score**
```python
oracle = Oracle(name='Docking')
score = oracle(smiles)
```
- Molecular docking score against target protein
- Requires protein structure and docking software
- Lower scores typically indicate better binding
**Vina - AutoDock Vina Score**
```python
oracle = Oracle(name='Vina')
score = oracle(smiles)
```
- Uses AutoDock Vina for protein-ligand docking
- Predicts binding affinity in kcal/mol
- More negative scores indicate stronger binding
## Multi-Objective Optimization
Combine multiple oracles for multi-property optimization:
```python
from tdc import Oracle
# Initialize multiple oracles
qed_oracle = Oracle(name='QED')
sa_oracle = Oracle(name='SA')
drd2_oracle = Oracle(name='DRD2')
# Define custom scoring function
def multi_objective_score(smiles):
qed = qed_oracle(smiles)
sa = 1 / (1 + sa_oracle(smiles)) # Invert SA (lower is better)
drd2 = drd2_oracle(smiles)
# Weighted combination
return 0.3 * qed + 0.3 * sa + 0.4 * drd2
# Evaluate molecule
score = multi_objective_score('CC(C)Cc1ccc(cc1)C(C)C(O)=O')
```
## Oracle Performance Considerations
### Speed
- **Fast**: QED, SA, LogP, MW, Lipinski (rule-based calculations)
- **Medium**: Target-specific ML models (DRD2, GSK3B, etc.)
- **Slow**: Docking-based oracles (Vina, ASKCOS)
### Reliability
- Oracles are ML models trained on specific datasets
- May not generalize to all chemical spaces
- Use multiple oracles to validate results
### Batch Processing
```python
# Efficient batch evaluation
oracle = Oracle(name='GSK3B')
smiles_list = ['SMILES1', 'SMILES2', ..., 'SMILES1000']
scores = oracle(smiles_list) # Faster than individual calls
```
## Common Workflows
### Goal-Directed Generation
```python
from tdc import Oracle
from tdc.generation import MolGen
# Load training data
data = MolGen(name='ChEMBL_V29')
train_smiles = data.get_data()['Drug'].tolist()
# Initialize oracle
oracle = Oracle(name='GSK3B')
# Generate molecules (user implements generative model)
# generated_smiles = generator.generate(n=1000)
# Evaluate generated molecules
scores = oracle(generated_smiles)
best_molecules = [(s, score) for s, score in zip(generated_smiles, scores)]
best_molecules.sort(key=lambda x: x[1], reverse=True)
print(f"Top 10 molecules:")
for smiles, score in best_molecules[:10]:
print(f"{smiles}: {score:.3f}")
```
### Distribution Learning
```python
from tdc import Oracle
import numpy as np
# Initialize oracle
oracle = Oracle(name='QED')
# Evaluate training set
train_scores = oracle(train_smiles)
train_mean = np.mean(train_scores)
train_std = np.std(train_scores)
# Evaluate generated set
gen_scores = oracle(generated_smiles)
gen_mean = np.mean(gen_scores)
gen_std = np.std(gen_scores)
# Compare distributions
print(f"Training: μ={train_mean:.3f}, σ={train_std:.3f}")
print(f"Generated: μ={gen_mean:.3f}, σ={gen_std:.3f}")
```
## Integration with TDC Benchmarks
```python
from tdc.generation import MolGen
# Use with GuacaMol benchmark
data = MolGen(name='GuacaMol')
# Oracles are automatically integrated
# Each GuacaMol task has associated oracle
benchmark_results = data.evaluate_guacamol(
generated_molecules=your_molecules,
oracle_name='GSK3B'
)
```
## Notes
- Oracle scores are predictions, not experimental measurements
- Always validate top candidates experimentally
- Different oracles may have different score ranges and interpretations
- Some oracles require additional dependencies or API access
- Check oracle documentation for specific details: https://tdcommons.ai/functions/oracles/
## Adding Custom Oracles
To create custom oracle functions:
```python
class CustomOracle:
def __init__(self):
# Initialize your model/method
pass
def __call__(self, smiles):
# Implement your scoring logic
# Return score or list of scores
pass
# Use like built-in oracles
custom_oracle = CustomOracle()
score = custom_oracle('CC(C)Cc1ccc(cc1)C(C)C(O)=O')
```
## References
- TDC Oracles Documentation: https://tdcommons.ai/functions/oracles/
- GuacaMol Paper: "GuacaMol: Benchmarking Models for de Novo Molecular Design"
- MOSES Paper: "Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models"

View File

@@ -0,0 +1,684 @@
# TDC Utilities and Data Functions
This document provides comprehensive documentation for TDC's data processing, evaluation, and utility functions.
## Overview
TDC provides utilities organized into four main categories:
1. **Dataset Splits** - Train/validation/test partitioning strategies
2. **Model Evaluation** - Standardized performance metrics
3. **Data Processing** - Molecule conversion, filtering, and transformation
4. **Entity Retrieval** - Database queries and conversions
## 1. Dataset Splits
Dataset splitting is crucial for evaluating model generalization. TDC provides multiple splitting strategies designed for therapeutic ML.
### Basic Split Usage
```python
from tdc.single_pred import ADME
data = ADME(name='Caco2_Wang')
# Get split with default parameters
split = data.get_split()
# Returns: {'train': DataFrame, 'valid': DataFrame, 'test': DataFrame}
# Customize split parameters
split = data.get_split(
method='scaffold',
seed=42,
frac=[0.7, 0.1, 0.2]
)
```
### Split Methods
#### Random Split
Random shuffling of data - suitable for general ML tasks.
```python
split = data.get_split(method='random', seed=1)
```
**When to use:**
- Baseline model evaluation
- When chemical/temporal structure is not important
- Quick prototyping
**Not recommended for:**
- Realistic drug discovery scenarios
- Evaluating generalization to new chemical matter
#### Scaffold Split
Splits based on molecular scaffolds (Bemis-Murcko scaffolds) - ensures test molecules are structurally distinct from training.
```python
split = data.get_split(method='scaffold', seed=1)
```
**When to use:**
- Default for most single prediction tasks
- Evaluating generalization to new chemical series
- Realistic drug discovery scenarios
**How it works:**
1. Extract Bemis-Murcko scaffold from each molecule
2. Group molecules by scaffold
3. Assign scaffolds to train/valid/test sets
4. Ensures test molecules have unseen scaffolds
#### Cold Splits (DTI/DDI Tasks)
For multi-instance prediction, cold splits ensure test set contains unseen drugs, targets, or both.
**Cold Drug Split:**
```python
from tdc.multi_pred import DTI
data = DTI(name='BindingDB_Kd')
split = data.get_split(method='cold_drug', seed=1)
```
- Test set contains drugs not seen during training
- Evaluates generalization to new compounds
**Cold Target Split:**
```python
split = data.get_split(method='cold_target', seed=1)
```
- Test set contains targets not seen during training
- Evaluates generalization to new proteins
**Cold Drug-Target Split:**
```python
split = data.get_split(method='cold_drug_target', seed=1)
```
- Test set contains novel drug-target pairs
- Most challenging evaluation scenario
#### Temporal Split
For datasets with temporal information - ensures test data is from later time points.
```python
split = data.get_split(method='temporal', seed=1)
```
**When to use:**
- Datasets with time stamps
- Simulating prospective prediction
- Clinical trial outcome prediction
### Custom Split Fractions
```python
# 80% train, 10% valid, 10% test
split = data.get_split(method='scaffold', frac=[0.8, 0.1, 0.1])
# 70% train, 15% valid, 15% test
split = data.get_split(method='scaffold', frac=[0.7, 0.15, 0.15])
```
### Stratified Splits
For classification tasks with imbalanced labels:
```python
split = data.get_split(method='scaffold', stratified=True)
```
Maintains label distribution across train/valid/test sets.
## 2. Model Evaluation
TDC provides standardized evaluation metrics for different task types.
### Basic Evaluator Usage
```python
from tdc import Evaluator
# Initialize evaluator
evaluator = Evaluator(name='ROC-AUC')
# Evaluate predictions
score = evaluator(y_true, y_pred)
```
### Classification Metrics
#### ROC-AUC
Receiver Operating Characteristic - Area Under Curve
```python
evaluator = Evaluator(name='ROC-AUC')
score = evaluator(y_true, y_pred_proba)
```
**Best for:**
- Binary classification
- Imbalanced datasets
- Overall discriminative ability
**Range:** 0-1 (higher is better, 0.5 is random)
#### PR-AUC
Precision-Recall Area Under Curve
```python
evaluator = Evaluator(name='PR-AUC')
score = evaluator(y_true, y_pred_proba)
```
**Best for:**
- Highly imbalanced datasets
- When positive class is rare
- Complements ROC-AUC
**Range:** 0-1 (higher is better)
#### F1 Score
Harmonic mean of precision and recall
```python
evaluator = Evaluator(name='F1')
score = evaluator(y_true, y_pred_binary)
```
**Best for:**
- Balance between precision and recall
- Multi-class classification
**Range:** 0-1 (higher is better)
#### Accuracy
Fraction of correct predictions
```python
evaluator = Evaluator(name='Accuracy')
score = evaluator(y_true, y_pred_binary)
```
**Best for:**
- Balanced datasets
- Simple baseline metric
**Not recommended for:** Imbalanced datasets
#### Cohen's Kappa
Agreement between predictions and ground truth, accounting for chance
```python
evaluator = Evaluator(name='Kappa')
score = evaluator(y_true, y_pred_binary)
```
**Range:** -1 to 1 (higher is better, 0 is random)
### Regression Metrics
#### RMSE - Root Mean Squared Error
```python
evaluator = Evaluator(name='RMSE')
score = evaluator(y_true, y_pred)
```
**Best for:**
- Continuous predictions
- Penalizes large errors heavily
**Range:** 0-∞ (lower is better)
#### MAE - Mean Absolute Error
```python
evaluator = Evaluator(name='MAE')
score = evaluator(y_true, y_pred)
```
**Best for:**
- Continuous predictions
- More robust to outliers than RMSE
**Range:** 0-∞ (lower is better)
#### R² - Coefficient of Determination
```python
evaluator = Evaluator(name='R2')
score = evaluator(y_true, y_pred)
```
**Best for:**
- Variance explained by model
- Comparing different models
**Range:** -∞ to 1 (higher is better, 1 is perfect)
#### MSE - Mean Squared Error
```python
evaluator = Evaluator(name='MSE')
score = evaluator(y_true, y_pred)
```
**Range:** 0-∞ (lower is better)
### Ranking Metrics
#### Spearman Correlation
Rank correlation coefficient
```python
evaluator = Evaluator(name='Spearman')
score = evaluator(y_true, y_pred)
```
**Best for:**
- Ranking tasks
- Non-linear relationships
- Ordinal data
**Range:** -1 to 1 (higher is better)
#### Pearson Correlation
Linear correlation coefficient
```python
evaluator = Evaluator(name='Pearson')
score = evaluator(y_true, y_pred)
```
**Best for:**
- Linear relationships
- Continuous data
**Range:** -1 to 1 (higher is better)
### Multi-Label Classification
```python
evaluator = Evaluator(name='Micro-F1')
score = evaluator(y_true_multilabel, y_pred_multilabel)
```
Available: `Micro-F1`, `Macro-F1`, `Micro-AUPR`, `Macro-AUPR`
### Benchmark Group Evaluation
For benchmark groups, evaluation requires multiple seeds:
```python
from tdc.benchmark_group import admet_group
group = admet_group(path='data/')
benchmark = group.get('Caco2_Wang')
# Predictions must be dict with seeds as keys
predictions = {}
for seed in [1, 2, 3, 4, 5]:
# Train model and predict
predictions[seed] = model_predictions
# Evaluate with mean and std across seeds
results = group.evaluate(predictions)
print(results) # {'Caco2_Wang': [mean_score, std_score]}
```
## 3. Data Processing
TDC provides 11 comprehensive data processing utilities.
### Molecule Format Conversion
Convert between ~15 molecular representations.
```python
from tdc.chem_utils import MolConvert
# SMILES to PyTorch Geometric
converter = MolConvert(src='SMILES', dst='PyG')
pyg_graph = converter('CC(C)Cc1ccc(cc1)C(C)C(O)=O')
# SMILES to DGL
converter = MolConvert(src='SMILES', dst='DGL')
dgl_graph = converter('CC(C)Cc1ccc(cc1)C(C)C(O)=O')
# SMILES to Morgan Fingerprint (ECFP)
converter = MolConvert(src='SMILES', dst='ECFP')
fingerprint = converter('CC(C)Cc1ccc(cc1)C(C)C(O)=O')
```
**Available formats:**
- **Text**: SMILES, SELFIES, InChI
- **Fingerprints**: ECFP (Morgan), MACCS, RDKit, AtomPair, TopologicalTorsion
- **Graphs**: PyG (PyTorch Geometric), DGL (Deep Graph Library)
- **3D**: Graph3D, Coulomb Matrix, Distance Matrix
**Batch conversion:**
```python
converter = MolConvert(src='SMILES', dst='PyG')
graphs = converter(['SMILES1', 'SMILES2', 'SMILES3'])
```
### Molecule Filters
Remove non-drug-like molecules using curated chemical rules.
```python
from tdc.chem_utils import MolFilter
# Initialize filter with rules
mol_filter = MolFilter(
rules=['PAINS', 'BMS'], # Chemical filter rules
property_filters_dict={
'MW': (150, 500), # Molecular weight range
'LogP': (-0.4, 5.6), # Lipophilicity range
'HBD': (0, 5), # H-bond donors
'HBA': (0, 10) # H-bond acceptors
}
)
# Filter molecules
filtered_smiles = mol_filter(smiles_list)
```
**Available filter rules:**
- `PAINS` - Pan-Assay Interference Compounds
- `BMS` - Bristol-Myers Squibb HTS deck filters
- `Glaxo` - GlaxoSmithKline filters
- `Dundee` - University of Dundee filters
- `Inpharmatica` - Inpharmatica filters
- `LINT` - Pfizer LINT filters
### Label Distribution Visualization
```python
# Visualize label distribution
data.label_distribution()
# Print statistics
data.print_stats()
```
Displays histogram and computes mean, median, std for continuous labels.
### Label Binarization
Convert continuous labels to binary using threshold.
```python
from tdc.utils import binarize
# Binarize with threshold
binary_labels = binarize(y_continuous, threshold=5.0, order='ascending')
# order='ascending': values >= threshold become 1
# order='descending': values <= threshold become 1
```
### Label Units Conversion
Transform between measurement units.
```python
from tdc.chem_utils import label_transform
# Convert nM to pKd
y_pkd = label_transform(y_nM, from_unit='nM', to_unit='p')
# Convert μM to nM
y_nM = label_transform(y_uM, from_unit='uM', to_unit='nM')
```
**Available conversions:**
- Binding affinity: nM, μM, pKd, pKi, pIC50
- Log transformations
- Natural log conversions
### Label Meaning
Get interpretable descriptions for labels.
```python
# Get label mapping
label_map = data.get_label_map(name='DrugBank')
print(label_map)
# {0: 'No interaction', 1: 'Increased effect', 2: 'Decreased effect', ...}
```
### Data Balancing
Handle class imbalance via over/under-sampling.
```python
from tdc.utils import balance
# Oversample minority class
X_balanced, y_balanced = balance(X, y, method='oversample')
# Undersample majority class
X_balanced, y_balanced = balance(X, y, method='undersample')
```
### Graph Transformation for Pair Data
Convert paired data to graph representations.
```python
from tdc.utils import create_graph_from_pairs
# Create graph from drug-drug pairs
graph = create_graph_from_pairs(
pairs=ddi_pairs, # [(drug1, drug2, label), ...]
format='edge_list' # or 'PyG', 'DGL'
)
```
### Negative Sampling
Generate negative samples for binary tasks.
```python
from tdc.utils import negative_sample
# Generate negative samples for DTI
negative_pairs = negative_sample(
positive_pairs=known_interactions,
all_drugs=drug_list,
all_targets=target_list,
ratio=1.0 # Negative:positive ratio
)
```
**Use cases:**
- Drug-target interaction prediction
- Drug-drug interaction tasks
- Creating balanced datasets
### Entity Retrieval
Convert between database identifiers.
#### PubChem CID to SMILES
```python
from tdc.utils import cid2smiles
smiles = cid2smiles(2244) # Aspirin
# Returns: 'CC(=O)Oc1ccccc1C(=O)O'
```
#### UniProt ID to Amino Acid Sequence
```python
from tdc.utils import uniprot2seq
sequence = uniprot2seq('P12345')
# Returns: 'MVKVYAPASS...'
```
#### Batch Retrieval
```python
# Multiple CIDs
smiles_list = [cid2smiles(cid) for cid in [2244, 5090, 6323]]
# Multiple UniProt IDs
sequences = [uniprot2seq(uid) for uid in ['P12345', 'Q9Y5S9']]
```
## 4. Advanced Utilities
### Retrieve Dataset Names
```python
from tdc.utils import retrieve_dataset_names
# Get all datasets for a task
adme_datasets = retrieve_dataset_names('ADME')
dti_datasets = retrieve_dataset_names('DTI')
tox_datasets = retrieve_dataset_names('Tox')
print(f"ADME datasets: {adme_datasets}")
```
### Fuzzy Search
TDC supports fuzzy matching for dataset names:
```python
from tdc.single_pred import ADME
# These all work (typo-tolerant)
data = ADME(name='Caco2_Wang')
data = ADME(name='caco2_wang')
data = ADME(name='Caco2') # Partial match
```
### Data Format Options
```python
# Pandas DataFrame (default)
df = data.get_data(format='df')
# Dictionary
data_dict = data.get_data(format='dict')
# DeepPurpose format (for DeepPurpose library)
dp_format = data.get_data(format='DeepPurpose')
# PyG/DGL graphs (if applicable)
graphs = data.get_data(format='PyG')
```
### Data Loader Utilities
```python
from tdc.utils import create_fold
# Create cross-validation folds
folds = create_fold(data, fold=5, seed=42)
# Returns list of (train_idx, test_idx) tuples
# Iterate through folds
for i, (train_idx, test_idx) in enumerate(folds):
train_data = data.iloc[train_idx]
test_data = data.iloc[test_idx]
# Train and evaluate
```
## Common Workflows
### Workflow 1: Complete Data Pipeline
```python
from tdc.single_pred import ADME
from tdc import Evaluator
from tdc.chem_utils import MolConvert, MolFilter
# 1. Load data
data = ADME(name='Caco2_Wang')
# 2. Filter molecules
mol_filter = MolFilter(rules=['PAINS'])
filtered_data = data.get_data()
filtered_data = filtered_data[
filtered_data['Drug'].apply(lambda x: mol_filter([x]))
]
# 3. Split data
split = data.get_split(method='scaffold', seed=42)
train, valid, test = split['train'], split['valid'], split['test']
# 4. Convert to graph representations
converter = MolConvert(src='SMILES', dst='PyG')
train_graphs = converter(train['Drug'].tolist())
# 5. Train model (user implements)
# model.fit(train_graphs, train['Y'])
# 6. Evaluate
evaluator = Evaluator(name='MAE')
# score = evaluator(test['Y'], predictions)
```
### Workflow 2: Multi-Task Learning Preparation
```python
from tdc.benchmark_group import admet_group
from tdc.chem_utils import MolConvert
# Load benchmark group
group = admet_group(path='data/')
# Get multiple datasets
datasets = ['Caco2_Wang', 'HIA_Hou', 'Bioavailability_Ma']
all_data = {}
for dataset_name in datasets:
benchmark = group.get(dataset_name)
all_data[dataset_name] = benchmark
# Prepare for multi-task learning
converter = MolConvert(src='SMILES', dst='ECFP')
# Process each dataset...
```
### Workflow 3: DTI Cold Split Evaluation
```python
from tdc.multi_pred import DTI
from tdc import Evaluator
# Load DTI data
data = DTI(name='BindingDB_Kd')
# Cold drug split
split = data.get_split(method='cold_drug', seed=42)
train, test = split['train'], split['test']
# Verify no drug overlap
train_drugs = set(train['Drug_ID'])
test_drugs = set(test['Drug_ID'])
assert len(train_drugs & test_drugs) == 0, "Drug leakage detected!"
# Train and evaluate
# model.fit(train)
evaluator = Evaluator(name='RMSE')
# score = evaluator(test['Y'], predictions)
```
## Best Practices
1. **Always use meaningful splits** - Use scaffold or cold splits for realistic evaluation
2. **Multiple seeds** - Run experiments with multiple seeds for robust results
3. **Appropriate metrics** - Choose metrics that match your task and dataset characteristics
4. **Data filtering** - Remove PAINS and non-drug-like molecules before training
5. **Format conversion** - Convert molecules to appropriate format for your model
6. **Batch processing** - Use batch operations for efficiency with large datasets
## Performance Tips
- Convert molecules in batch mode for faster processing
- Cache converted representations to avoid recomputation
- Use appropriate data formats for your framework (PyG, DGL, etc.)
- Filter data early in the pipeline to reduce computation
## References
- TDC Documentation: https://tdc.readthedocs.io
- Data Functions: https://tdcommons.ai/fct_overview/
- Evaluation Metrics: https://tdcommons.ai/functions/model_eval/
- Data Splits: https://tdcommons.ai/functions/data_split/

View File

@@ -0,0 +1,327 @@
#!/usr/bin/env python3
"""
TDC Benchmark Group Evaluation Template
This script demonstrates how to use TDC benchmark groups for systematic
model evaluation following the required 5-seed protocol.
Usage:
python benchmark_evaluation.py
"""
from tdc.benchmark_group import admet_group
from tdc import Evaluator
import numpy as np
import pandas as pd
def load_benchmark_group():
"""
Load the ADMET benchmark group
"""
print("=" * 60)
print("Loading ADMET Benchmark Group")
print("=" * 60)
# Initialize benchmark group
group = admet_group(path='data/')
# Get available benchmarks
print("\nAvailable benchmarks in ADMET group:")
benchmark_names = group.dataset_names
print(f"Total: {len(benchmark_names)} datasets")
for i, name in enumerate(benchmark_names[:10], 1):
print(f" {i}. {name}")
if len(benchmark_names) > 10:
print(f" ... and {len(benchmark_names) - 10} more")
return group
def single_dataset_evaluation(group, dataset_name='Caco2_Wang'):
"""
Example: Evaluate on a single dataset with 5-seed protocol
"""
print("\n" + "=" * 60)
print(f"Example 1: Single Dataset Evaluation ({dataset_name})")
print("=" * 60)
# Get dataset benchmarks
benchmark = group.get(dataset_name)
print(f"\nBenchmark structure:")
print(f" Seeds: {list(benchmark.keys())}")
# Required: Evaluate with 5 different seeds
predictions = {}
for seed in [1, 2, 3, 4, 5]:
print(f"\n--- Seed {seed} ---")
# Get train/valid data for this seed
train = benchmark[seed]['train']
valid = benchmark[seed]['valid']
print(f"Train size: {len(train)}")
print(f"Valid size: {len(valid)}")
# TODO: Replace with your model training
# model = YourModel()
# model.fit(train['Drug'], train['Y'])
# For demonstration, create dummy predictions
# Replace with: predictions[seed] = model.predict(benchmark[seed]['test'])
test = benchmark[seed]['test']
y_true = test['Y'].values
# Simulate predictions (add controlled noise)
np.random.seed(seed)
y_pred = y_true + np.random.normal(0, 0.3, len(y_true))
predictions[seed] = y_pred
# Evaluate this seed
evaluator = Evaluator(name='MAE')
score = evaluator(y_true, y_pred)
print(f"MAE for seed {seed}: {score:.4f}")
# Evaluate across all seeds
print("\n--- Overall Evaluation ---")
results = group.evaluate(predictions)
print(f"\nResults for {dataset_name}:")
mean_score, std_score = results[dataset_name]
print(f" Mean MAE: {mean_score:.4f}")
print(f" Std MAE: {std_score:.4f}")
return predictions, results
def multiple_datasets_evaluation(group):
"""
Example: Evaluate on multiple datasets
"""
print("\n" + "=" * 60)
print("Example 2: Multiple Datasets Evaluation")
print("=" * 60)
# Select a subset of datasets for demonstration
selected_datasets = ['Caco2_Wang', 'HIA_Hou', 'Bioavailability_Ma']
all_predictions = {}
all_results = {}
for dataset_name in selected_datasets:
print(f"\n{'='*40}")
print(f"Evaluating: {dataset_name}")
print(f"{'='*40}")
benchmark = group.get(dataset_name)
predictions = {}
# Train and predict for each seed
for seed in [1, 2, 3, 4, 5]:
train = benchmark[seed]['train']
test = benchmark[seed]['test']
# TODO: Replace with your model
# model = YourModel()
# model.fit(train['Drug'], train['Y'])
# predictions[seed] = model.predict(test['Drug'])
# Dummy predictions for demonstration
np.random.seed(seed)
y_true = test['Y'].values
y_pred = y_true + np.random.normal(0, 0.3, len(y_true))
predictions[seed] = y_pred
all_predictions[dataset_name] = predictions
# Evaluate this dataset
results = group.evaluate({dataset_name: predictions})
all_results[dataset_name] = results[dataset_name]
mean_score, std_score = results[dataset_name]
print(f" {dataset_name}: {mean_score:.4f} ± {std_score:.4f}")
# Summary
print("\n" + "=" * 60)
print("Summary of Results")
print("=" * 60)
results_df = pd.DataFrame([
{
'Dataset': name,
'Mean MAE': f"{mean:.4f}",
'Std MAE': f"{std:.4f}"
}
for name, (mean, std) in all_results.items()
])
print(results_df.to_string(index=False))
return all_predictions, all_results
def custom_model_template():
"""
Template for integrating your own model with TDC benchmarks
"""
print("\n" + "=" * 60)
print("Example 3: Custom Model Template")
print("=" * 60)
code_template = '''
# Template for using your own model with TDC benchmarks
from tdc.benchmark_group import admet_group
from your_library import YourModel # Replace with your model
# Initialize benchmark group
group = admet_group(path='data/')
benchmark = group.get('Caco2_Wang')
predictions = {}
for seed in [1, 2, 3, 4, 5]:
# Get data for this seed
train = benchmark[seed]['train']
valid = benchmark[seed]['valid']
test = benchmark[seed]['test']
# Extract features and labels
X_train, y_train = train['Drug'], train['Y']
X_valid, y_valid = valid['Drug'], valid['Y']
X_test = test['Drug']
# Initialize and train model
model = YourModel(random_state=seed)
model.fit(X_train, y_train)
# Optionally use validation set for early stopping
# model.fit(X_train, y_train, validation_data=(X_valid, y_valid))
# Make predictions on test set
predictions[seed] = model.predict(X_test)
# Evaluate with TDC
results = group.evaluate(predictions)
print(f"Results: {results}")
'''
print("\nCustom Model Integration Template:")
print("=" * 60)
print(code_template)
return code_template
def multi_seed_statistics(predictions_dict):
"""
Example: Analyzing multi-seed prediction statistics
"""
print("\n" + "=" * 60)
print("Example 4: Multi-Seed Statistics Analysis")
print("=" * 60)
# Analyze prediction variability across seeds
all_preds = np.array([predictions_dict[seed] for seed in [1, 2, 3, 4, 5]])
print("\nPrediction statistics across 5 seeds:")
print(f" Shape: {all_preds.shape}")
print(f" Mean prediction: {all_preds.mean():.4f}")
print(f" Std across seeds: {all_preds.std(axis=0).mean():.4f}")
print(f" Min prediction: {all_preds.min():.4f}")
print(f" Max prediction: {all_preds.max():.4f}")
# Per-sample variance
per_sample_std = all_preds.std(axis=0)
print(f"\nPer-sample prediction std:")
print(f" Mean: {per_sample_std.mean():.4f}")
print(f" Median: {np.median(per_sample_std):.4f}")
print(f" Max: {per_sample_std.max():.4f}")
def leaderboard_submission_guide():
"""
Guide for submitting to TDC leaderboards
"""
print("\n" + "=" * 60)
print("Example 5: Leaderboard Submission Guide")
print("=" * 60)
guide = """
To submit results to TDC leaderboards:
1. Evaluate your model following the 5-seed protocol:
- Use seeds [1, 2, 3, 4, 5] exactly as provided
- Do not modify the train/valid/test splits
- Report mean ± std across all 5 seeds
2. Format your results:
results = group.evaluate(predictions)
# Returns: {'dataset_name': [mean_score, std_score]}
3. Submit to leaderboard:
- Visit: https://tdcommons.ai/benchmark/admet_group/
- Click on your dataset of interest
- Submit your results with:
* Model name and description
* Mean score ± standard deviation
* Reference to paper/code (if available)
4. Best practices:
- Report all datasets in the benchmark group
- Include model hyperparameters
- Share code for reproducibility
- Compare against baseline models
5. Evaluation metrics:
- ADMET Group uses MAE by default
- Other groups may use different metrics
- Check benchmark-specific requirements
"""
print(guide)
def main():
"""
Main function to run all benchmark evaluation examples
"""
print("\n" + "=" * 60)
print("TDC Benchmark Group Evaluation Examples")
print("=" * 60)
# Load benchmark group
group = load_benchmark_group()
# Example 1: Single dataset evaluation
predictions, results = single_dataset_evaluation(group)
# Example 2: Multiple datasets evaluation
all_predictions, all_results = multiple_datasets_evaluation(group)
# Example 3: Custom model template
custom_model_template()
# Example 4: Multi-seed statistics
multi_seed_statistics(predictions)
# Example 5: Leaderboard submission guide
leaderboard_submission_guide()
print("\n" + "=" * 60)
print("Benchmark evaluation examples completed!")
print("=" * 60)
print("\nNext steps:")
print("1. Replace dummy predictions with your model")
print("2. Run full evaluation on all benchmark datasets")
print("3. Submit results to TDC leaderboard")
print("=" * 60)
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,214 @@
#!/usr/bin/env python3
"""
TDC Data Loading and Splitting Template
This script demonstrates how to load TDC datasets and apply different
splitting strategies for model training and evaluation.
Usage:
python load_and_split_data.py
"""
from tdc.single_pred import ADME
from tdc.multi_pred import DTI
from tdc import Evaluator
import pandas as pd
def load_single_pred_example():
"""
Example: Loading and splitting a single-prediction dataset (ADME)
"""
print("=" * 60)
print("Example 1: Single-Prediction Task (ADME)")
print("=" * 60)
# Load Caco2 dataset (intestinal permeability)
print("\nLoading Caco2_Wang dataset...")
data = ADME(name='Caco2_Wang')
# Get basic dataset info
print(f"\nDataset size: {len(data.get_data())} molecules")
data.print_stats()
# Method 1: Scaffold split (default, recommended)
print("\n--- Scaffold Split ---")
split = data.get_split(method='scaffold', seed=42, frac=[0.7, 0.1, 0.2])
train = split['train']
valid = split['valid']
test = split['test']
print(f"Train: {len(train)} molecules")
print(f"Valid: {len(valid)} molecules")
print(f"Test: {len(test)} molecules")
# Display sample data
print("\nSample training data:")
print(train.head(3))
# Method 2: Random split
print("\n--- Random Split ---")
split_random = data.get_split(method='random', seed=42, frac=[0.8, 0.1, 0.1])
print(f"Train: {len(split_random['train'])} molecules")
print(f"Valid: {len(split_random['valid'])} molecules")
print(f"Test: {len(split_random['test'])} molecules")
return split
def load_multi_pred_example():
"""
Example: Loading and splitting a multi-prediction dataset (DTI)
"""
print("\n" + "=" * 60)
print("Example 2: Multi-Prediction Task (DTI)")
print("=" * 60)
# Load BindingDB Kd dataset (drug-target interactions)
print("\nLoading BindingDB_Kd dataset...")
data = DTI(name='BindingDB_Kd')
# Get basic dataset info
full_data = data.get_data()
print(f"\nDataset size: {len(full_data)} drug-target pairs")
print(f"Unique drugs: {full_data['Drug_ID'].nunique()}")
print(f"Unique targets: {full_data['Target_ID'].nunique()}")
# Method 1: Random split
print("\n--- Random Split ---")
split_random = data.get_split(method='random', seed=42)
print(f"Train: {len(split_random['train'])} pairs")
print(f"Valid: {len(split_random['valid'])} pairs")
print(f"Test: {len(split_random['test'])} pairs")
# Method 2: Cold drug split (unseen drugs in test)
print("\n--- Cold Drug Split ---")
split_cold_drug = data.get_split(method='cold_drug', seed=42)
train = split_cold_drug['train']
test = split_cold_drug['test']
# Verify no drug overlap
train_drugs = set(train['Drug_ID'])
test_drugs = set(test['Drug_ID'])
overlap = train_drugs & test_drugs
print(f"Train: {len(train)} pairs, {len(train_drugs)} unique drugs")
print(f"Test: {len(test)} pairs, {len(test_drugs)} unique drugs")
print(f"Drug overlap: {len(overlap)} (should be 0)")
# Method 3: Cold target split (unseen targets in test)
print("\n--- Cold Target Split ---")
split_cold_target = data.get_split(method='cold_target', seed=42)
train = split_cold_target['train']
test = split_cold_target['test']
train_targets = set(train['Target_ID'])
test_targets = set(test['Target_ID'])
overlap = train_targets & test_targets
print(f"Train: {len(train)} pairs, {len(train_targets)} unique targets")
print(f"Test: {len(test)} pairs, {len(test_targets)} unique targets")
print(f"Target overlap: {len(overlap)} (should be 0)")
# Display sample data
print("\nSample DTI data:")
print(full_data.head(3))
return split_cold_drug
def evaluation_example(split):
"""
Example: Evaluating model predictions with TDC evaluators
"""
print("\n" + "=" * 60)
print("Example 3: Model Evaluation")
print("=" * 60)
test = split['test']
# For demonstration, create dummy predictions
# In practice, replace with your model's predictions
import numpy as np
np.random.seed(42)
# Simulate predictions (replace with model.predict(test['Drug']))
y_true = test['Y'].values
y_pred = y_true + np.random.normal(0, 0.5, len(y_true)) # Add noise
# Evaluate with different metrics
print("\nEvaluating predictions...")
# Regression metrics
mae_evaluator = Evaluator(name='MAE')
mae = mae_evaluator(y_true, y_pred)
print(f"MAE: {mae:.4f}")
rmse_evaluator = Evaluator(name='RMSE')
rmse = rmse_evaluator(y_true, y_pred)
print(f"RMSE: {rmse:.4f}")
r2_evaluator = Evaluator(name='R2')
r2 = r2_evaluator(y_true, y_pred)
print(f"R²: {r2:.4f}")
spearman_evaluator = Evaluator(name='Spearman')
spearman = spearman_evaluator(y_true, y_pred)
print(f"Spearman: {spearman:.4f}")
def custom_split_example():
"""
Example: Creating custom splits with different fractions
"""
print("\n" + "=" * 60)
print("Example 4: Custom Split Fractions")
print("=" * 60)
data = ADME(name='HIA_Hou')
# Custom split fractions
custom_fracs = [
([0.6, 0.2, 0.2], "60/20/20 split"),
([0.8, 0.1, 0.1], "80/10/10 split"),
([0.7, 0.15, 0.15], "70/15/15 split")
]
for frac, description in custom_fracs:
split = data.get_split(method='scaffold', seed=42, frac=frac)
print(f"\n{description}:")
print(f" Train: {len(split['train'])} ({frac[0]*100:.0f}%)")
print(f" Valid: {len(split['valid'])} ({frac[1]*100:.0f}%)")
print(f" Test: {len(split['test'])} ({frac[2]*100:.0f}%)")
def main():
"""
Main function to run all examples
"""
print("\n" + "=" * 60)
print("TDC Data Loading and Splitting Examples")
print("=" * 60)
# Example 1: Single prediction with scaffold split
split = load_single_pred_example()
# Example 2: Multi prediction with cold splits
dti_split = load_multi_pred_example()
# Example 3: Model evaluation
evaluation_example(split)
# Example 4: Custom split fractions
custom_split_example()
print("\n" + "=" * 60)
print("Examples completed!")
print("=" * 60)
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,404 @@
#!/usr/bin/env python3
"""
TDC Molecular Generation with Oracles Template
This script demonstrates how to use TDC oracles for molecular generation
tasks including goal-directed generation and distribution learning.
Usage:
python molecular_generation.py
"""
from tdc.generation import MolGen
from tdc import Oracle
import numpy as np
def load_generation_dataset():
"""
Load molecular generation dataset
"""
print("=" * 60)
print("Loading Molecular Generation Dataset")
print("=" * 60)
# Load ChEMBL dataset
data = MolGen(name='ChEMBL_V29')
# Get training molecules
split = data.get_split()
train_smiles = split['train']['Drug'].tolist()
print(f"\nDataset: ChEMBL_V29")
print(f"Training molecules: {len(train_smiles)}")
# Display sample molecules
print("\nSample SMILES:")
for i, smiles in enumerate(train_smiles[:5], 1):
print(f" {i}. {smiles}")
return train_smiles
def single_oracle_example():
"""
Example: Using a single oracle for molecular evaluation
"""
print("\n" + "=" * 60)
print("Example 1: Single Oracle Evaluation")
print("=" * 60)
# Initialize oracle for GSK3B target
oracle = Oracle(name='GSK3B')
# Test molecules
test_molecules = [
'CC(C)Cc1ccc(cc1)C(C)C(O)=O', # Ibuprofen
'CC(=O)Oc1ccccc1C(=O)O', # Aspirin
'Cn1c(=O)c2c(ncn2C)n(C)c1=O', # Caffeine
'CN1C=NC2=C1C(=O)N(C(=O)N2C)C' # Theophylline
]
print("\nEvaluating molecules with GSK3B oracle:")
print("-" * 60)
for smiles in test_molecules:
score = oracle(smiles)
print(f"SMILES: {smiles}")
print(f"GSK3B score: {score:.4f}\n")
def multiple_oracles_example():
"""
Example: Using multiple oracles for multi-objective optimization
"""
print("\n" + "=" * 60)
print("Example 2: Multiple Oracles (Multi-Objective)")
print("=" * 60)
# Initialize multiple oracles
oracles = {
'QED': Oracle(name='QED'), # Drug-likeness
'SA': Oracle(name='SA'), # Synthetic accessibility
'GSK3B': Oracle(name='GSK3B'), # Target binding
'LogP': Oracle(name='LogP') # Lipophilicity
}
# Test molecule
test_smiles = 'CC(C)Cc1ccc(cc1)C(C)C(O)=O'
print(f"\nEvaluating: {test_smiles}")
print("-" * 60)
scores = {}
for name, oracle in oracles.items():
score = oracle(test_smiles)
scores[name] = score
print(f"{name:10s}: {score:.4f}")
# Multi-objective score (weighted combination)
print("\n--- Multi-Objective Scoring ---")
# Invert SA (lower is better, so we invert for maximization)
sa_score = 1.0 / (1.0 + scores['SA'])
# Weighted combination
weights = {'QED': 0.3, 'SA': 0.2, 'GSK3B': 0.4, 'LogP': 0.1}
multi_score = (
weights['QED'] * scores['QED'] +
weights['SA'] * sa_score +
weights['GSK3B'] * scores['GSK3B'] +
weights['LogP'] * (scores['LogP'] / 5.0) # Normalize LogP
)
print(f"Multi-objective score: {multi_score:.4f}")
print(f"Weights: {weights}")
def batch_evaluation_example():
"""
Example: Batch evaluation of multiple molecules
"""
print("\n" + "=" * 60)
print("Example 3: Batch Evaluation")
print("=" * 60)
# Generate sample molecules
molecules = [
'CC(C)Cc1ccc(cc1)C(C)C(O)=O',
'CC(=O)Oc1ccccc1C(=O)O',
'Cn1c(=O)c2c(ncn2C)n(C)c1=O',
'CN1C=NC2=C1C(=O)N(C(=O)N2C)C',
'CC(C)NCC(COc1ccc(cc1)COCCOC(C)C)O'
]
# Initialize oracle
oracle = Oracle(name='DRD2')
print(f"\nBatch evaluating {len(molecules)} molecules with DRD2 oracle...")
# Batch evaluation (more efficient than individual calls)
scores = oracle(molecules)
print("\nResults:")
print("-" * 60)
for smiles, score in zip(molecules, scores):
print(f"{smiles[:40]:40s}... Score: {score:.4f}")
# Statistics
print(f"\nStatistics:")
print(f" Mean score: {np.mean(scores):.4f}")
print(f" Std score: {np.std(scores):.4f}")
print(f" Min score: {np.min(scores):.4f}")
print(f" Max score: {np.max(scores):.4f}")
def goal_directed_generation_template():
"""
Template for goal-directed molecular generation
"""
print("\n" + "=" * 60)
print("Example 4: Goal-Directed Generation Template")
print("=" * 60)
template = '''
# Template for goal-directed molecular generation
from tdc.generation import MolGen
from tdc import Oracle
import numpy as np
# 1. Load training data
data = MolGen(name='ChEMBL_V29')
train_smiles = data.get_split()['train']['Drug'].tolist()
# 2. Initialize oracle(s)
oracle = Oracle(name='GSK3B')
# 3. Initialize your generative model
# model = YourGenerativeModel()
# model.fit(train_smiles)
# 4. Generation loop
num_iterations = 100
num_molecules_per_iter = 100
best_molecules = []
for iteration in range(num_iterations):
# Generate candidate molecules
# candidates = model.generate(num_molecules_per_iter)
# Evaluate with oracle
scores = oracle(candidates)
# Select top molecules
top_indices = np.argsort(scores)[-10:]
top_molecules = [candidates[i] for i in top_indices]
top_scores = [scores[i] for i in top_indices]
# Store best molecules
best_molecules.extend(zip(top_molecules, top_scores))
# Optional: Fine-tune model on top molecules
# model.fine_tune(top_molecules)
# Print progress
print(f"Iteration {iteration}: Best score = {max(scores):.4f}")
# Sort and display top molecules
best_molecules.sort(key=lambda x: x[1], reverse=True)
print("\\nTop 10 molecules:")
for smiles, score in best_molecules[:10]:
print(f"{smiles}: {score:.4f}")
'''
print("\nGoal-Directed Generation Template:")
print("=" * 60)
print(template)
def distribution_learning_example(train_smiles):
"""
Example: Distribution learning evaluation
"""
print("\n" + "=" * 60)
print("Example 5: Distribution Learning")
print("=" * 60)
# Use subset for demonstration
train_subset = train_smiles[:1000]
# Initialize oracle
oracle = Oracle(name='QED')
print("\nEvaluating property distribution...")
# Evaluate training set
print("Computing training set distribution...")
train_scores = oracle(train_subset)
# Simulate generated molecules (in practice, use your generative model)
# For demo: add noise to training molecules
print("Computing generated set distribution...")
generated_scores = train_scores + np.random.normal(0, 0.1, len(train_scores))
generated_scores = np.clip(generated_scores, 0, 1) # QED is [0, 1]
# Compare distributions
print("\n--- Distribution Statistics ---")
print(f"Training set (n={len(train_subset)}):")
print(f" Mean: {np.mean(train_scores):.4f}")
print(f" Std: {np.std(train_scores):.4f}")
print(f" Median: {np.median(train_scores):.4f}")
print(f"\nGenerated set (n={len(generated_scores)}):")
print(f" Mean: {np.mean(generated_scores):.4f}")
print(f" Std: {np.std(generated_scores):.4f}")
print(f" Median: {np.median(generated_scores):.4f}")
# Distribution similarity metrics
from scipy.stats import ks_2samp
ks_statistic, p_value = ks_2samp(train_scores, generated_scores)
print(f"\nKolmogorov-Smirnov Test:")
print(f" KS statistic: {ks_statistic:.4f}")
print(f" P-value: {p_value:.4f}")
if p_value > 0.05:
print(" → Distributions are similar (p > 0.05)")
else:
print(" → Distributions are significantly different (p < 0.05)")
def available_oracles_info():
"""
Display information about available oracles
"""
print("\n" + "=" * 60)
print("Example 6: Available Oracles")
print("=" * 60)
oracle_info = {
'Biochemical Targets': [
'DRD2', 'GSK3B', 'JNK3', '5HT2A', 'ACE',
'MAPK', 'CDK', 'P38', 'PARP1', 'PIK3CA'
],
'Physicochemical Properties': [
'QED', 'SA', 'LogP', 'MW', 'Lipinski'
],
'Composite Metrics': [
'Isomer_Meta', 'Median1', 'Median2',
'Rediscovery', 'Similarity', 'Uniqueness', 'Novelty'
],
'Specialized': [
'ASKCOS', 'Docking', 'Vina'
]
}
print("\nAvailable Oracle Categories:")
print("-" * 60)
for category, oracles in oracle_info.items():
print(f"\n{category}:")
for oracle_name in oracles:
print(f" - {oracle_name}")
print("\nFor detailed oracle documentation, see:")
print(" references/oracles.md")
def constraint_satisfaction_example():
"""
Example: Molecular generation with constraints
"""
print("\n" + "=" * 60)
print("Example 7: Constraint Satisfaction")
print("=" * 60)
# Define constraints
constraints = {
'QED': (0.5, 1.0), # Drug-likeness >= 0.5
'SA': (1.0, 5.0), # Easy to synthesize
'MW': (200, 500), # Molecular weight 200-500 Da
'LogP': (0, 3) # Lipophilicity 0-3
}
# Initialize oracles
oracles = {name: Oracle(name=name) for name in constraints.keys()}
# Test molecules
test_molecules = [
'CC(C)Cc1ccc(cc1)C(C)C(O)=O',
'CC(=O)Oc1ccccc1C(=O)O',
'Cn1c(=O)c2c(ncn2C)n(C)c1=O'
]
print("\nConstraints:")
for prop, (min_val, max_val) in constraints.items():
print(f" {prop}: [{min_val}, {max_val}]")
print("\n" + "-" * 60)
print("Evaluating molecules against constraints:")
print("-" * 60)
for smiles in test_molecules:
print(f"\nSMILES: {smiles}")
satisfies_all = True
for prop, (min_val, max_val) in constraints.items():
score = oracles[prop](smiles)
satisfies = min_val <= score <= max_val
status = "" if satisfies else ""
print(f" {prop:10s}: {score:7.2f} [{min_val:5.1f}, {max_val:5.1f}] {status}")
satisfies_all = satisfies_all and satisfies
result = "PASS" if satisfies_all else "FAIL"
print(f" Overall: {result}")
def main():
"""
Main function to run all molecular generation examples
"""
print("\n" + "=" * 60)
print("TDC Molecular Generation with Oracles Examples")
print("=" * 60)
# Load generation dataset
train_smiles = load_generation_dataset()
# Example 1: Single oracle
single_oracle_example()
# Example 2: Multiple oracles
multiple_oracles_example()
# Example 3: Batch evaluation
batch_evaluation_example()
# Example 4: Goal-directed generation template
goal_directed_generation_template()
# Example 5: Distribution learning
distribution_learning_example(train_smiles)
# Example 6: Available oracles
available_oracles_info()
# Example 7: Constraint satisfaction
constraint_satisfaction_example()
print("\n" + "=" * 60)
print("Molecular generation examples completed!")
print("=" * 60)
print("\nNext steps:")
print("1. Implement your generative model")
print("2. Use oracles to guide generation")
print("3. Evaluate generated molecules")
print("4. Iterate and optimize")
print("=" * 60)
if __name__ == "__main__":
main()