Initial commit

This commit is contained in:
Zhongwei Li
2025-11-30 08:30:10 +08:00
commit f0bd18fb4e
824 changed files with 331919 additions and 0 deletions

View File

@@ -0,0 +1,407 @@
# Working with Sequence Files (FASTA/FASTQ)
## FASTA Files
### Overview
Pysam provides the `FastaFile` class for indexed, random access to FASTA reference sequences. FASTA files must be indexed with `samtools faidx` before use.
### Opening FASTA Files
```python
import pysam
# Open indexed FASTA file
fasta = pysam.FastaFile("reference.fasta")
# Automatically looks for reference.fasta.fai index
```
### Creating FASTA Index
```python
# Create index using pysam
pysam.faidx("reference.fasta")
# Or using samtools command
pysam.samtools.faidx("reference.fasta")
```
This creates a `.fai` index file required for random access.
### FastaFile Properties
```python
fasta = pysam.FastaFile("reference.fasta")
# List of reference sequences
references = fasta.references
print(f"References: {references}")
# Get lengths
lengths = fasta.lengths
print(f"Lengths: {lengths}")
# Get specific sequence length
chr1_length = fasta.get_reference_length("chr1")
```
### Fetching Sequences
#### Fetch by Region
Uses **0-based, half-open** coordinates:
```python
# Fetch specific region
sequence = fasta.fetch("chr1", 1000, 2000)
print(f"Sequence: {sequence}") # Returns 1000 bases
# Fetch entire chromosome
chr1_seq = fasta.fetch("chr1")
# Fetch using region string (1-based)
sequence = fasta.fetch(region="chr1:1001-2000")
```
**Important:** Numeric arguments use 0-based coordinates, region strings use 1-based coordinates (samtools convention).
#### Common Use Cases
```python
# Get sequence at variant position
def get_variant_context(fasta, chrom, pos, window=10):
"""Get sequence context around a variant position (1-based)."""
start = max(0, pos - window - 1) # Convert to 0-based
end = pos + window
return fasta.fetch(chrom, start, end)
# Get sequence for gene coordinates
def get_gene_sequence(fasta, chrom, start, end, strand):
"""Get gene sequence with strand awareness."""
seq = fasta.fetch(chrom, start, end)
if strand == "-":
# Reverse complement
complement = str.maketrans("ATGCatgc", "TACGtacg")
seq = seq.translate(complement)[::-1]
return seq
# Check reference allele
def check_ref_allele(fasta, chrom, pos, expected_ref):
"""Verify reference allele at position (1-based pos)."""
actual = fasta.fetch(chrom, pos-1, pos) # Convert to 0-based
return actual.upper() == expected_ref.upper()
```
### Extracting Multiple Regions
```python
# Extract multiple regions efficiently
regions = [
("chr1", 1000, 2000),
("chr1", 5000, 6000),
("chr2", 10000, 11000)
]
sequences = {}
for chrom, start, end in regions:
seq_id = f"{chrom}:{start}-{end}"
sequences[seq_id] = fasta.fetch(chrom, start, end)
```
### Working with Ambiguous Bases
FASTA files may contain IUPAC ambiguity codes:
- N = any base
- R = A or G (purine)
- Y = C or T (pyrimidine)
- S = G or C (strong)
- W = A or T (weak)
- K = G or T (keto)
- M = A or C (amino)
- B = C, G, or T (not A)
- D = A, G, or T (not C)
- H = A, C, or T (not G)
- V = A, C, or G (not T)
```python
# Handle ambiguous bases
def count_ambiguous(sequence):
"""Count non-ATGC bases."""
return sum(1 for base in sequence.upper() if base not in "ATGC")
# Remove regions with too many Ns
def has_quality_sequence(fasta, chrom, start, end, max_n_frac=0.1):
"""Check if region has acceptable N content."""
seq = fasta.fetch(chrom, start, end)
n_count = seq.upper().count('N')
return (n_count / len(seq)) <= max_n_frac
```
## FASTQ Files
### Overview
Pysam provides `FastxFile` (or `FastqFile`) for reading FASTQ files containing raw sequencing reads with quality scores. FASTQ files do not support random access—only sequential reading.
### Opening FASTQ Files
```python
import pysam
# Open FASTQ file
fastq = pysam.FastxFile("reads.fastq")
# Works with compressed files
fastq_gz = pysam.FastxFile("reads.fastq.gz")
```
### Reading FASTQ Records
```python
fastq = pysam.FastxFile("reads.fastq")
for read in fastq:
print(f"Name: {read.name}")
print(f"Sequence: {read.sequence}")
print(f"Quality: {read.quality}")
print(f"Comment: {read.comment}") # Optional header comment
```
**FastqProxy attributes:**
- `name` - Read identifier (without @ prefix)
- `sequence` - DNA/RNA sequence
- `quality` - ASCII-encoded quality string
- `comment` - Optional comment from header line
- `get_quality_array()` - Convert quality string to numeric array
### Quality Score Conversion
```python
# Convert quality string to numeric values
for read in fastq:
qual_array = read.get_quality_array()
mean_quality = sum(qual_array) / len(qual_array)
print(f"{read.name}: mean Q = {mean_quality:.1f}")
```
Quality scores are Phred-scaled (typically Phred+33 encoding):
- Q = -10 * log10(P_error)
- ASCII 33 ('!') = Q0
- ASCII 43 ('+') = Q10
- ASCII 63 ('?') = Q30
### Common FASTQ Processing Workflows
#### Quality Filtering
```python
def filter_by_quality(input_fastq, output_fastq, min_mean_quality=20):
"""Filter reads by mean quality score."""
with pysam.FastxFile(input_fastq) as infile:
with open(output_fastq, 'w') as outfile:
for read in infile:
qual_array = read.get_quality_array()
mean_q = sum(qual_array) / len(qual_array)
if mean_q >= min_mean_quality:
# Write in FASTQ format
outfile.write(f"@{read.name}\n")
outfile.write(f"{read.sequence}\n")
outfile.write("+\n")
outfile.write(f"{read.quality}\n")
```
#### Length Filtering
```python
def filter_by_length(input_fastq, output_fastq, min_length=50):
"""Filter reads by minimum length."""
with pysam.FastxFile(input_fastq) as infile:
with open(output_fastq, 'w') as outfile:
kept = 0
for read in infile:
if len(read.sequence) >= min_length:
outfile.write(f"@{read.name}\n")
outfile.write(f"{read.sequence}\n")
outfile.write("+\n")
outfile.write(f"{read.quality}\n")
kept += 1
print(f"Kept {kept} reads")
```
#### Calculate Quality Statistics
```python
def calculate_fastq_stats(fastq_file):
"""Calculate basic statistics for FASTQ file."""
total_reads = 0
total_bases = 0
quality_sum = 0
with pysam.FastxFile(fastq_file) as fastq:
for read in fastq:
total_reads += 1
read_length = len(read.sequence)
total_bases += read_length
qual_array = read.get_quality_array()
quality_sum += sum(qual_array)
return {
"total_reads": total_reads,
"total_bases": total_bases,
"mean_read_length": total_bases / total_reads if total_reads > 0 else 0,
"mean_quality": quality_sum / total_bases if total_bases > 0 else 0
}
```
#### Extract Reads by Name
```python
def extract_reads_by_name(fastq_file, read_names, output_file):
"""Extract specific reads by name."""
read_set = set(read_names)
with pysam.FastxFile(fastq_file) as infile:
with open(output_file, 'w') as outfile:
for read in infile:
if read.name in read_set:
outfile.write(f"@{read.name}\n")
outfile.write(f"{read.sequence}\n")
outfile.write("+\n")
outfile.write(f"{read.quality}\n")
```
#### Convert FASTQ to FASTA
```python
def fastq_to_fasta(fastq_file, fasta_file):
"""Convert FASTQ to FASTA (discards quality scores)."""
with pysam.FastxFile(fastq_file) as infile:
with open(fasta_file, 'w') as outfile:
for read in infile:
outfile.write(f">{read.name}\n")
outfile.write(f"{read.sequence}\n")
```
#### Subsample FASTQ
```python
import random
def subsample_fastq(input_fastq, output_fastq, fraction=0.1, seed=42):
"""Randomly subsample reads from FASTQ file."""
random.seed(seed)
with pysam.FastxFile(input_fastq) as infile:
with open(output_fastq, 'w') as outfile:
for read in infile:
if random.random() < fraction:
outfile.write(f"@{read.name}\n")
outfile.write(f"{read.sequence}\n")
outfile.write("+\n")
outfile.write(f"{read.quality}\n")
```
## Tabix-Indexed Files
### Overview
Pysam provides `TabixFile` for accessing tabix-indexed genomic data files (BED, GFF, GTF, generic tab-delimited).
### Opening Tabix Files
```python
import pysam
# Open tabix-indexed file
tabix = pysam.TabixFile("annotations.bed.gz")
# File must be bgzip-compressed and tabix-indexed
```
### Creating Tabix Index
```python
# Index a file
pysam.tabix_index("annotations.bed", preset="bed", force=True)
# Creates annotations.bed.gz and annotations.bed.gz.tbi
# Presets available: bed, gff, vcf
```
### Fetching Records
```python
tabix = pysam.TabixFile("annotations.bed.gz")
# Fetch region
for row in tabix.fetch("chr1", 1000000, 2000000):
print(row) # Returns tab-delimited string
# Parse with specific parser
for row in tabix.fetch("chr1", 1000000, 2000000, parser=pysam.asBed()):
print(f"Interval: {row.contig}:{row.start}-{row.end}")
# Available parsers: asBed(), asGTF(), asVCF(), asTuple()
```
### Working with BED Files
```python
bed = pysam.TabixFile("regions.bed.gz")
# Access BED fields by name
for interval in bed.fetch("chr1", 1000000, 2000000, parser=pysam.asBed()):
print(f"Region: {interval.contig}:{interval.start}-{interval.end}")
print(f"Name: {interval.name}")
print(f"Score: {interval.score}")
print(f"Strand: {interval.strand}")
```
### Working with GTF/GFF Files
```python
gtf = pysam.TabixFile("annotations.gtf.gz")
# Access GTF fields
for feature in gtf.fetch("chr1", 1000000, 2000000, parser=pysam.asGTF()):
print(f"Feature: {feature.feature}")
print(f"Gene: {feature.gene_id}")
print(f"Transcript: {feature.transcript_id}")
print(f"Coordinates: {feature.start}-{feature.end}")
```
## Performance Tips
### FASTA
1. **Always use indexed FASTA** files (create .fai with samtools faidx)
2. **Batch fetch operations** when extracting multiple regions
3. **Cache frequently accessed sequences** in memory
4. **Use appropriate window sizes** to avoid loading excessive sequence data
### FASTQ
1. **Stream processing** - FASTQ files are read sequentially, process on-the-fly
2. **Use compressed FASTQ.gz** to save disk space (pysam handles transparently)
3. **Avoid loading entire file** into memory—process read-by-read
4. **For large files**, consider parallel processing with file splitting
### Tabix
1. **Always bgzip and tabix-index** files before region queries
2. **Use appropriate presets** when creating indices
3. **Specify parser** for named field access
4. **Batch queries** to same file to avoid re-opening
## Common Pitfalls
1. **FASTA coordinate system:** fetch() uses 0-based coordinates, region strings use 1-based
2. **Missing index:** FASTA random access requires .fai index file
3. **FASTQ sequential only:** Cannot do random access or region-based queries on FASTQ
4. **Quality encoding:** Assume Phred+33 unless specified otherwise
5. **Tabix compression:** Must use bgzip, not regular gzip, for tabix indexing
6. **Parser requirement:** TabixFile needs explicit parser for named field access
7. **Case sensitivity:** FASTA sequences preserve case—use .upper() or .lower() for consistent comparisons