Initial commit

This commit is contained in:
Zhongwei Li
2025-11-30 08:30:10 +08:00
commit f0bd18fb4e
824 changed files with 331919 additions and 0 deletions

View File

@@ -0,0 +1,333 @@
"""
PyMC Hierarchical/Multilevel Model Template
This template provides a complete workflow for Bayesian hierarchical models,
useful for grouped/nested data (e.g., students within schools, patients within hospitals).
Customize the sections marked with # TODO
"""
import pymc as pm
import arviz as az
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# =============================================================================
# 1. DATA PREPARATION
# =============================================================================
# TODO: Load your data with group structure
# Example:
# df = pd.read_csv('data.csv')
# groups = df['group_id'].values
# X = df['predictor'].values
# y = df['outcome'].values
# For demonstration: Generate hierarchical data
np.random.seed(42)
n_groups = 10
n_per_group = 20
n_obs = n_groups * n_per_group
# True hierarchical structure
true_mu_alpha = 5.0
true_sigma_alpha = 2.0
true_mu_beta = 1.5
true_sigma_beta = 0.5
true_sigma = 1.0
group_alphas = np.random.normal(true_mu_alpha, true_sigma_alpha, n_groups)
group_betas = np.random.normal(true_mu_beta, true_sigma_beta, n_groups)
# Generate data
groups = np.repeat(np.arange(n_groups), n_per_group)
X = np.random.randn(n_obs)
y = group_alphas[groups] + group_betas[groups] * X + np.random.randn(n_obs) * true_sigma
# TODO: Customize group names
group_names = [f'Group_{i}' for i in range(n_groups)]
# =============================================================================
# 2. BUILD HIERARCHICAL MODEL
# =============================================================================
print("Building hierarchical model...")
coords = {
'groups': group_names,
'obs': np.arange(n_obs)
}
with pm.Model(coords=coords) as hierarchical_model:
# Data containers (for later predictions)
X_data = pm.Data('X_data', X)
groups_data = pm.Data('groups_data', groups)
# Hyperpriors (population-level parameters)
# TODO: Adjust hyperpriors based on your domain knowledge
mu_alpha = pm.Normal('mu_alpha', mu=0, sigma=10)
sigma_alpha = pm.HalfNormal('sigma_alpha', sigma=5)
mu_beta = pm.Normal('mu_beta', mu=0, sigma=10)
sigma_beta = pm.HalfNormal('sigma_beta', sigma=5)
# Group-level parameters (non-centered parameterization)
# Non-centered parameterization improves sampling efficiency
alpha_offset = pm.Normal('alpha_offset', mu=0, sigma=1, dims='groups')
alpha = pm.Deterministic('alpha', mu_alpha + sigma_alpha * alpha_offset, dims='groups')
beta_offset = pm.Normal('beta_offset', mu=0, sigma=1, dims='groups')
beta = pm.Deterministic('beta', mu_beta + sigma_beta * beta_offset, dims='groups')
# Observation-level model
mu = alpha[groups_data] + beta[groups_data] * X_data
# Observation noise
sigma = pm.HalfNormal('sigma', sigma=5)
# Likelihood
y_obs = pm.Normal('y_obs', mu=mu, sigma=sigma, observed=y, dims='obs')
print("Model built successfully!")
print(f"Groups: {n_groups}")
print(f"Observations: {n_obs}")
# =============================================================================
# 3. PRIOR PREDICTIVE CHECK
# =============================================================================
print("\nRunning prior predictive check...")
with hierarchical_model:
prior_pred = pm.sample_prior_predictive(samples=500, random_seed=42)
# Visualize prior predictions
fig, ax = plt.subplots(figsize=(10, 6))
az.plot_ppc(prior_pred, group='prior', num_pp_samples=100, ax=ax)
ax.set_title('Prior Predictive Check')
plt.tight_layout()
plt.savefig('hierarchical_prior_check.png', dpi=300, bbox_inches='tight')
print("Prior predictive check saved to 'hierarchical_prior_check.png'")
# =============================================================================
# 4. FIT MODEL
# =============================================================================
print("\nFitting hierarchical model...")
print("(This may take a few minutes due to model complexity)")
with hierarchical_model:
# MCMC sampling with higher target_accept for hierarchical models
idata = pm.sample(
draws=2000,
tune=2000, # More tuning for hierarchical models
chains=4,
target_accept=0.95, # Higher for better convergence
random_seed=42,
idata_kwargs={'log_likelihood': True}
)
print("Sampling complete!")
# =============================================================================
# 5. CHECK DIAGNOSTICS
# =============================================================================
print("\n" + "="*60)
print("DIAGNOSTICS")
print("="*60)
# Summary for key parameters
summary = az.summary(
idata,
var_names=['mu_alpha', 'sigma_alpha', 'mu_beta', 'sigma_beta', 'sigma', 'alpha', 'beta']
)
print("\nParameter Summary:")
print(summary)
# Check convergence
bad_rhat = summary[summary['r_hat'] > 1.01]
if len(bad_rhat) > 0:
print(f"\n⚠️ WARNING: {len(bad_rhat)} parameters with R-hat > 1.01")
print(bad_rhat[['r_hat']])
else:
print("\n✓ All R-hat values < 1.01 (good convergence)")
# Check effective sample size
low_ess = summary[summary['ess_bulk'] < 400]
if len(low_ess) > 0:
print(f"\n⚠️ WARNING: {len(low_ess)} parameters with ESS < 400")
print(low_ess[['ess_bulk']].head(10))
else:
print("\n✓ All ESS values > 400 (sufficient samples)")
# Check divergences
divergences = idata.sample_stats.diverging.sum().item()
if divergences > 0:
print(f"\n⚠️ WARNING: {divergences} divergent transitions")
print(" This is common in hierarchical models - non-centered parameterization already applied")
print(" Consider even higher target_accept or stronger hyperpriors")
else:
print("\n✓ No divergences")
# Trace plots for hyperparameters
fig, axes = plt.subplots(5, 2, figsize=(12, 12))
az.plot_trace(
idata,
var_names=['mu_alpha', 'sigma_alpha', 'mu_beta', 'sigma_beta', 'sigma'],
axes=axes
)
plt.tight_layout()
plt.savefig('hierarchical_trace_plots.png', dpi=300, bbox_inches='tight')
print("\nTrace plots saved to 'hierarchical_trace_plots.png'")
# =============================================================================
# 6. POSTERIOR PREDICTIVE CHECK
# =============================================================================
print("\nRunning posterior predictive check...")
with hierarchical_model:
pm.sample_posterior_predictive(idata, extend_inferencedata=True, random_seed=42)
# Visualize fit
fig, ax = plt.subplots(figsize=(10, 6))
az.plot_ppc(idata, num_pp_samples=100, ax=ax)
ax.set_title('Posterior Predictive Check')
plt.tight_layout()
plt.savefig('hierarchical_posterior_check.png', dpi=300, bbox_inches='tight')
print("Posterior predictive check saved to 'hierarchical_posterior_check.png'")
# =============================================================================
# 7. ANALYZE HIERARCHICAL STRUCTURE
# =============================================================================
print("\n" + "="*60)
print("POPULATION-LEVEL (HYPERPARAMETER) ESTIMATES")
print("="*60)
# Population-level estimates
hyper_summary = summary.loc[['mu_alpha', 'sigma_alpha', 'mu_beta', 'sigma_beta', 'sigma']]
print(hyper_summary[['mean', 'sd', 'hdi_3%', 'hdi_97%']])
# Forest plot for group-level parameters
fig, axes = plt.subplots(1, 2, figsize=(14, 8))
# Group intercepts
az.plot_forest(idata, var_names=['alpha'], combined=True, ax=axes[0])
axes[0].set_title('Group-Level Intercepts (α)')
axes[0].set_yticklabels(group_names)
axes[0].axvline(idata.posterior['mu_alpha'].mean().item(), color='red', linestyle='--', label='Population mean')
axes[0].legend()
# Group slopes
az.plot_forest(idata, var_names=['beta'], combined=True, ax=axes[1])
axes[1].set_title('Group-Level Slopes (β)')
axes[1].set_yticklabels(group_names)
axes[1].axvline(idata.posterior['mu_beta'].mean().item(), color='red', linestyle='--', label='Population mean')
axes[1].legend()
plt.tight_layout()
plt.savefig('group_level_estimates.png', dpi=300, bbox_inches='tight')
print("\nGroup-level estimates saved to 'group_level_estimates.png'")
# Shrinkage visualization
fig, axes = plt.subplots(1, 2, figsize=(12, 5))
# Intercepts
alpha_samples = idata.posterior['alpha'].values.reshape(-1, n_groups)
alpha_means = alpha_samples.mean(axis=0)
mu_alpha_mean = idata.posterior['mu_alpha'].mean().item()
axes[0].scatter(range(n_groups), alpha_means, alpha=0.6)
axes[0].axhline(mu_alpha_mean, color='red', linestyle='--', label='Population mean')
axes[0].set_xlabel('Group')
axes[0].set_ylabel('Intercept')
axes[0].set_title('Group Intercepts (showing shrinkage to population mean)')
axes[0].legend()
# Slopes
beta_samples = idata.posterior['beta'].values.reshape(-1, n_groups)
beta_means = beta_samples.mean(axis=0)
mu_beta_mean = idata.posterior['mu_beta'].mean().item()
axes[1].scatter(range(n_groups), beta_means, alpha=0.6)
axes[1].axhline(mu_beta_mean, color='red', linestyle='--', label='Population mean')
axes[1].set_xlabel('Group')
axes[1].set_ylabel('Slope')
axes[1].set_title('Group Slopes (showing shrinkage to population mean)')
axes[1].legend()
plt.tight_layout()
plt.savefig('shrinkage_plot.png', dpi=300, bbox_inches='tight')
print("Shrinkage plot saved to 'shrinkage_plot.png'")
# =============================================================================
# 8. PREDICTIONS FOR NEW DATA
# =============================================================================
# TODO: Specify new data
# For existing groups:
# new_X = np.array([...])
# new_groups = np.array([0, 1, 2, ...]) # Existing group indices
# For a new group (predict using population-level parameters):
# Just use mu_alpha and mu_beta
print("\n" + "="*60)
print("PREDICTIONS FOR NEW DATA")
print("="*60)
# Example: Predict for existing groups
new_X = np.array([-2, -1, 0, 1, 2])
new_groups = np.array([0, 2, 4, 6, 8]) # Select some groups
with hierarchical_model:
pm.set_data({'X_data': new_X, 'groups_data': new_groups, 'obs': np.arange(len(new_X))})
post_pred = pm.sample_posterior_predictive(
idata.posterior,
var_names=['y_obs'],
random_seed=42
)
y_pred_samples = post_pred.posterior_predictive['y_obs']
y_pred_mean = y_pred_samples.mean(dim=['chain', 'draw']).values
y_pred_hdi = az.hdi(y_pred_samples, hdi_prob=0.95).values
print(f"Predictions for existing groups:")
print(f"{'Group':<10} {'X':<10} {'Mean':<15} {'95% HDI Lower':<15} {'95% HDI Upper':<15}")
print("-"*65)
for i, g in enumerate(new_groups):
print(f"{group_names[g]:<10} {new_X[i]:<10.2f} {y_pred_mean[i]:<15.3f} {y_pred_hdi[i, 0]:<15.3f} {y_pred_hdi[i, 1]:<15.3f}")
# Predict for a new group (using population parameters)
print(f"\nPrediction for a NEW group (using population-level parameters):")
new_X_newgroup = np.array([0.0])
# Manually compute using population parameters
mu_alpha_samples = idata.posterior['mu_alpha'].values.flatten()
mu_beta_samples = idata.posterior['mu_beta'].values.flatten()
sigma_samples = idata.posterior['sigma'].values.flatten()
# Predicted mean for new group
y_pred_newgroup = mu_alpha_samples + mu_beta_samples * new_X_newgroup[0]
y_pred_mean_newgroup = y_pred_newgroup.mean()
y_pred_hdi_newgroup = az.hdi(y_pred_newgroup, hdi_prob=0.95)
print(f"X = {new_X_newgroup[0]:.2f}")
print(f"Predicted mean: {y_pred_mean_newgroup:.3f}")
print(f"95% HDI: [{y_pred_hdi_newgroup[0]:.3f}, {y_pred_hdi_newgroup[1]:.3f}]")
# =============================================================================
# 9. SAVE RESULTS
# =============================================================================
idata.to_netcdf('hierarchical_model_results.nc')
print("\nResults saved to 'hierarchical_model_results.nc'")
summary.to_csv('hierarchical_model_summary.csv')
print("Summary saved to 'hierarchical_model_summary.csv'")
print("\n" + "="*60)
print("ANALYSIS COMPLETE")
print("="*60)

View File

@@ -0,0 +1,241 @@
"""
PyMC Linear Regression Template
This template provides a complete workflow for Bayesian linear regression,
including data preparation, model building, diagnostics, and predictions.
Customize the sections marked with # TODO
"""
import pymc as pm
import arviz as az
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# =============================================================================
# 1. DATA PREPARATION
# =============================================================================
# TODO: Load your data
# Example:
# df = pd.read_csv('data.csv')
# X = df[['predictor1', 'predictor2', 'predictor3']].values
# y = df['outcome'].values
# For demonstration:
np.random.seed(42)
n_samples = 100
n_predictors = 3
X = np.random.randn(n_samples, n_predictors)
true_beta = np.array([1.5, -0.8, 2.1])
true_alpha = 0.5
y = true_alpha + X @ true_beta + np.random.randn(n_samples) * 0.5
# Standardize predictors for better sampling
X_mean = X.mean(axis=0)
X_std = X.std(axis=0)
X_scaled = (X - X_mean) / X_std
# =============================================================================
# 2. BUILD MODEL
# =============================================================================
# TODO: Customize predictor names
predictor_names = ['predictor1', 'predictor2', 'predictor3']
coords = {
'predictors': predictor_names,
'obs_id': np.arange(len(y))
}
with pm.Model(coords=coords) as linear_model:
# Priors
# TODO: Adjust prior parameters based on your domain knowledge
alpha = pm.Normal('alpha', mu=0, sigma=1)
beta = pm.Normal('beta', mu=0, sigma=1, dims='predictors')
sigma = pm.HalfNormal('sigma', sigma=1)
# Linear predictor
mu = alpha + pm.math.dot(X_scaled, beta)
# Likelihood
y_obs = pm.Normal('y_obs', mu=mu, sigma=sigma, observed=y, dims='obs_id')
# =============================================================================
# 3. PRIOR PREDICTIVE CHECK
# =============================================================================
print("Running prior predictive check...")
with linear_model:
prior_pred = pm.sample_prior_predictive(samples=1000, random_seed=42)
# Visualize prior predictions
fig, ax = plt.subplots(figsize=(10, 6))
az.plot_ppc(prior_pred, group='prior', num_pp_samples=100, ax=ax)
ax.set_title('Prior Predictive Check')
plt.tight_layout()
plt.savefig('prior_predictive_check.png', dpi=300, bbox_inches='tight')
print("Prior predictive check saved to 'prior_predictive_check.png'")
# =============================================================================
# 4. FIT MODEL
# =============================================================================
print("\nFitting model...")
with linear_model:
# Optional: Quick ADVI exploration
# approx = pm.fit(n=20000, random_seed=42)
# MCMC sampling
idata = pm.sample(
draws=2000,
tune=1000,
chains=4,
target_accept=0.9,
random_seed=42,
idata_kwargs={'log_likelihood': True}
)
print("Sampling complete!")
# =============================================================================
# 5. CHECK DIAGNOSTICS
# =============================================================================
print("\n" + "="*60)
print("DIAGNOSTICS")
print("="*60)
# Summary statistics
summary = az.summary(idata, var_names=['alpha', 'beta', 'sigma'])
print("\nParameter Summary:")
print(summary)
# Check convergence
bad_rhat = summary[summary['r_hat'] > 1.01]
if len(bad_rhat) > 0:
print(f"\n⚠️ WARNING: {len(bad_rhat)} parameters with R-hat > 1.01")
print(bad_rhat[['r_hat']])
else:
print("\n✓ All R-hat values < 1.01 (good convergence)")
# Check effective sample size
low_ess = summary[summary['ess_bulk'] < 400]
if len(low_ess) > 0:
print(f"\n⚠️ WARNING: {len(low_ess)} parameters with ESS < 400")
print(low_ess[['ess_bulk', 'ess_tail']])
else:
print("\n✓ All ESS values > 400 (sufficient samples)")
# Check divergences
divergences = idata.sample_stats.diverging.sum().item()
if divergences > 0:
print(f"\n⚠️ WARNING: {divergences} divergent transitions")
print(" Consider increasing target_accept or reparameterizing")
else:
print("\n✓ No divergences")
# Trace plots
fig, axes = plt.subplots(len(['alpha', 'beta', 'sigma']), 2, figsize=(12, 8))
az.plot_trace(idata, var_names=['alpha', 'beta', 'sigma'], axes=axes)
plt.tight_layout()
plt.savefig('trace_plots.png', dpi=300, bbox_inches='tight')
print("\nTrace plots saved to 'trace_plots.png'")
# =============================================================================
# 6. POSTERIOR PREDICTIVE CHECK
# =============================================================================
print("\nRunning posterior predictive check...")
with linear_model:
pm.sample_posterior_predictive(idata, extend_inferencedata=True, random_seed=42)
# Visualize fit
fig, ax = plt.subplots(figsize=(10, 6))
az.plot_ppc(idata, num_pp_samples=100, ax=ax)
ax.set_title('Posterior Predictive Check')
plt.tight_layout()
plt.savefig('posterior_predictive_check.png', dpi=300, bbox_inches='tight')
print("Posterior predictive check saved to 'posterior_predictive_check.png'")
# =============================================================================
# 7. ANALYZE RESULTS
# =============================================================================
# Posterior distributions
fig, axes = plt.subplots(1, 3, figsize=(15, 4))
az.plot_posterior(idata, var_names=['alpha', 'beta', 'sigma'], ax=axes)
plt.tight_layout()
plt.savefig('posterior_distributions.png', dpi=300, bbox_inches='tight')
print("Posterior distributions saved to 'posterior_distributions.png'")
# Forest plot for coefficients
fig, ax = plt.subplots(figsize=(8, 6))
az.plot_forest(idata, var_names=['beta'], combined=True, ax=ax)
ax.set_title('Coefficient Estimates (95% HDI)')
ax.set_yticklabels(predictor_names)
plt.tight_layout()
plt.savefig('coefficient_forest_plot.png', dpi=300, bbox_inches='tight')
print("Forest plot saved to 'coefficient_forest_plot.png'")
# Print coefficient estimates
print("\n" + "="*60)
print("COEFFICIENT ESTIMATES")
print("="*60)
beta_samples = idata.posterior['beta']
for i, name in enumerate(predictor_names):
mean = beta_samples.sel(predictors=name).mean().item()
hdi = az.hdi(beta_samples.sel(predictors=name), hdi_prob=0.95)
print(f"{name:20s}: {mean:7.3f} [95% HDI: {hdi.values[0]:7.3f}, {hdi.values[1]:7.3f}]")
# =============================================================================
# 8. PREDICTIONS FOR NEW DATA
# =============================================================================
# TODO: Provide new data for predictions
# X_new = np.array([[...], [...], ...]) # New predictor values
# For demonstration, use some test data
X_new = np.random.randn(10, n_predictors)
X_new_scaled = (X_new - X_mean) / X_std
# Update model data and predict
with linear_model:
pm.set_data({'X_scaled': X_new_scaled, 'obs_id': np.arange(len(X_new))})
post_pred = pm.sample_posterior_predictive(
idata.posterior,
var_names=['y_obs'],
random_seed=42
)
# Extract predictions
y_pred_samples = post_pred.posterior_predictive['y_obs']
y_pred_mean = y_pred_samples.mean(dim=['chain', 'draw']).values
y_pred_hdi = az.hdi(y_pred_samples, hdi_prob=0.95).values
print("\n" + "="*60)
print("PREDICTIONS FOR NEW DATA")
print("="*60)
print(f"{'Index':<10} {'Mean':<15} {'95% HDI Lower':<15} {'95% HDI Upper':<15}")
print("-"*60)
for i in range(len(X_new)):
print(f"{i:<10} {y_pred_mean[i]:<15.3f} {y_pred_hdi[i, 0]:<15.3f} {y_pred_hdi[i, 1]:<15.3f}")
# =============================================================================
# 9. SAVE RESULTS
# =============================================================================
# Save InferenceData
idata.to_netcdf('linear_regression_results.nc')
print("\nResults saved to 'linear_regression_results.nc'")
# Save summary to CSV
summary.to_csv('model_summary.csv')
print("Summary saved to 'model_summary.csv'")
print("\n" + "="*60)
print("ANALYSIS COMPLETE")
print("="*60)