Initial commit

This commit is contained in:
Zhongwei Li
2025-11-30 08:30:10 +08:00
commit f0bd18fb4e
824 changed files with 331919 additions and 0 deletions

566
skills/pymc/SKILL.md Normal file
View File

@@ -0,0 +1,566 @@
---
name: pymc-bayesian-modeling
description: "Bayesian modeling with PyMC. Build hierarchical models, MCMC (NUTS), variational inference, LOO/WAIC comparison, posterior checks, for probabilistic programming and inference."
---
# PyMC Bayesian Modeling
## Overview
PyMC is a Python library for Bayesian modeling and probabilistic programming. Build, fit, validate, and compare Bayesian models using PyMC's modern API (version 5.x+), including hierarchical models, MCMC sampling (NUTS), variational inference, and model comparison (LOO, WAIC).
## When to Use This Skill
This skill should be used when:
- Building Bayesian models (linear/logistic regression, hierarchical models, time series, etc.)
- Performing MCMC sampling or variational inference
- Conducting prior/posterior predictive checks
- Diagnosing sampling issues (divergences, convergence, ESS)
- Comparing multiple models using information criteria (LOO, WAIC)
- Implementing uncertainty quantification through Bayesian methods
- Working with hierarchical/multilevel data structures
- Handling missing data or measurement error in a principled way
## Standard Bayesian Workflow
Follow this workflow for building and validating Bayesian models:
### 1. Data Preparation
```python
import pymc as pm
import arviz as az
import numpy as np
# Load and prepare data
X = ... # Predictors
y = ... # Outcomes
# Standardize predictors for better sampling
X_mean = X.mean(axis=0)
X_std = X.std(axis=0)
X_scaled = (X - X_mean) / X_std
```
**Key practices:**
- Standardize continuous predictors (improves sampling efficiency)
- Center outcomes when possible
- Handle missing data explicitly (treat as parameters)
- Use named dimensions with `coords` for clarity
### 2. Model Building
```python
coords = {
'predictors': ['var1', 'var2', 'var3'],
'obs_id': np.arange(len(y))
}
with pm.Model(coords=coords) as model:
# Priors
alpha = pm.Normal('alpha', mu=0, sigma=1)
beta = pm.Normal('beta', mu=0, sigma=1, dims='predictors')
sigma = pm.HalfNormal('sigma', sigma=1)
# Linear predictor
mu = alpha + pm.math.dot(X_scaled, beta)
# Likelihood
y_obs = pm.Normal('y_obs', mu=mu, sigma=sigma, observed=y, dims='obs_id')
```
**Key practices:**
- Use weakly informative priors (not flat priors)
- Use `HalfNormal` or `Exponential` for scale parameters
- Use named dimensions (`dims`) instead of `shape` when possible
- Use `pm.Data()` for values that will be updated for predictions
### 3. Prior Predictive Check
**Always validate priors before fitting:**
```python
with model:
prior_pred = pm.sample_prior_predictive(samples=1000, random_seed=42)
# Visualize
az.plot_ppc(prior_pred, group='prior')
```
**Check:**
- Do prior predictions span reasonable values?
- Are extreme values plausible given domain knowledge?
- If priors generate implausible data, adjust and re-check
### 4. Fit Model
```python
with model:
# Optional: Quick exploration with ADVI
# approx = pm.fit(n=20000)
# Full MCMC inference
idata = pm.sample(
draws=2000,
tune=1000,
chains=4,
target_accept=0.9,
random_seed=42,
idata_kwargs={'log_likelihood': True} # For model comparison
)
```
**Key parameters:**
- `draws=2000`: Number of samples per chain
- `tune=1000`: Warmup samples (discarded)
- `chains=4`: Run 4 chains for convergence checking
- `target_accept=0.9`: Higher for difficult posteriors (0.95-0.99)
- Include `log_likelihood=True` for model comparison
### 5. Check Diagnostics
**Use the diagnostic script:**
```python
from scripts.model_diagnostics import check_diagnostics
results = check_diagnostics(idata, var_names=['alpha', 'beta', 'sigma'])
```
**Check:**
- **R-hat < 1.01**: Chains have converged
- **ESS > 400**: Sufficient effective samples
- **No divergences**: NUTS sampled successfully
- **Trace plots**: Chains should mix well (fuzzy caterpillar)
**If issues arise:**
- Divergences → Increase `target_accept=0.95`, use non-centered parameterization
- Low ESS → Sample more draws, reparameterize to reduce correlation
- High R-hat → Run longer, check for multimodality
### 6. Posterior Predictive Check
**Validate model fit:**
```python
with model:
pm.sample_posterior_predictive(idata, extend_inferencedata=True, random_seed=42)
# Visualize
az.plot_ppc(idata)
```
**Check:**
- Do posterior predictions capture observed data patterns?
- Are systematic deviations evident (model misspecification)?
- Consider alternative models if fit is poor
### 7. Analyze Results
```python
# Summary statistics
print(az.summary(idata, var_names=['alpha', 'beta', 'sigma']))
# Posterior distributions
az.plot_posterior(idata, var_names=['alpha', 'beta', 'sigma'])
# Coefficient estimates
az.plot_forest(idata, var_names=['beta'], combined=True)
```
### 8. Make Predictions
```python
X_new = ... # New predictor values
X_new_scaled = (X_new - X_mean) / X_std
with model:
pm.set_data({'X_scaled': X_new_scaled})
post_pred = pm.sample_posterior_predictive(
idata.posterior,
var_names=['y_obs'],
random_seed=42
)
# Extract prediction intervals
y_pred_mean = post_pred.posterior_predictive['y_obs'].mean(dim=['chain', 'draw'])
y_pred_hdi = az.hdi(post_pred.posterior_predictive, var_names=['y_obs'])
```
## Common Model Patterns
### Linear Regression
For continuous outcomes with linear relationships:
```python
with pm.Model() as linear_model:
alpha = pm.Normal('alpha', mu=0, sigma=10)
beta = pm.Normal('beta', mu=0, sigma=10, shape=n_predictors)
sigma = pm.HalfNormal('sigma', sigma=1)
mu = alpha + pm.math.dot(X, beta)
y = pm.Normal('y', mu=mu, sigma=sigma, observed=y_obs)
```
**Use template:** `assets/linear_regression_template.py`
### Logistic Regression
For binary outcomes:
```python
with pm.Model() as logistic_model:
alpha = pm.Normal('alpha', mu=0, sigma=10)
beta = pm.Normal('beta', mu=0, sigma=10, shape=n_predictors)
logit_p = alpha + pm.math.dot(X, beta)
y = pm.Bernoulli('y', logit_p=logit_p, observed=y_obs)
```
### Hierarchical Models
For grouped data (use non-centered parameterization):
```python
with pm.Model(coords={'groups': group_names}) as hierarchical_model:
# Hyperpriors
mu_alpha = pm.Normal('mu_alpha', mu=0, sigma=10)
sigma_alpha = pm.HalfNormal('sigma_alpha', sigma=1)
# Group-level (non-centered)
alpha_offset = pm.Normal('alpha_offset', mu=0, sigma=1, dims='groups')
alpha = pm.Deterministic('alpha', mu_alpha + sigma_alpha * alpha_offset, dims='groups')
# Observation-level
mu = alpha[group_idx]
sigma = pm.HalfNormal('sigma', sigma=1)
y = pm.Normal('y', mu=mu, sigma=sigma, observed=y_obs)
```
**Use template:** `assets/hierarchical_model_template.py`
**Critical:** Always use non-centered parameterization for hierarchical models to avoid divergences.
### Poisson Regression
For count data:
```python
with pm.Model() as poisson_model:
alpha = pm.Normal('alpha', mu=0, sigma=10)
beta = pm.Normal('beta', mu=0, sigma=10, shape=n_predictors)
log_lambda = alpha + pm.math.dot(X, beta)
y = pm.Poisson('y', mu=pm.math.exp(log_lambda), observed=y_obs)
```
For overdispersed counts, use `NegativeBinomial` instead.
### Time Series
For autoregressive processes:
```python
with pm.Model() as ar_model:
sigma = pm.HalfNormal('sigma', sigma=1)
rho = pm.Normal('rho', mu=0, sigma=0.5, shape=ar_order)
init_dist = pm.Normal.dist(mu=0, sigma=sigma)
y = pm.AR('y', rho=rho, sigma=sigma, init_dist=init_dist, observed=y_obs)
```
## Model Comparison
### Comparing Models
Use LOO or WAIC for model comparison:
```python
from scripts.model_comparison import compare_models, check_loo_reliability
# Fit models with log_likelihood
models = {
'Model1': idata1,
'Model2': idata2,
'Model3': idata3
}
# Compare using LOO
comparison = compare_models(models, ic='loo')
# Check reliability
check_loo_reliability(models)
```
**Interpretation:**
- **Δloo < 2**: Models are similar, choose simpler model
- **2 < Δloo < 4**: Weak evidence for better model
- **4 < Δloo < 10**: Moderate evidence
- **Δloo > 10**: Strong evidence for better model
**Check Pareto-k values:**
- k < 0.7: LOO reliable
- k > 0.7: Consider WAIC or k-fold CV
### Model Averaging
When models are similar, average predictions:
```python
from scripts.model_comparison import model_averaging
averaged_pred, weights = model_averaging(models, var_name='y_obs')
```
## Distribution Selection Guide
### For Priors
**Scale parameters** (σ, τ):
- `pm.HalfNormal('sigma', sigma=1)` - Default choice
- `pm.Exponential('sigma', lam=1)` - Alternative
- `pm.Gamma('sigma', alpha=2, beta=1)` - More informative
**Unbounded parameters**:
- `pm.Normal('theta', mu=0, sigma=1)` - For standardized data
- `pm.StudentT('theta', nu=3, mu=0, sigma=1)` - Robust to outliers
**Positive parameters**:
- `pm.LogNormal('theta', mu=0, sigma=1)`
- `pm.Gamma('theta', alpha=2, beta=1)`
**Probabilities**:
- `pm.Beta('p', alpha=2, beta=2)` - Weakly informative
- `pm.Uniform('p', lower=0, upper=1)` - Non-informative (use sparingly)
**Correlation matrices**:
- `pm.LKJCorr('corr', n=n_vars, eta=2)` - eta=1 uniform, eta>1 prefers identity
### For Likelihoods
**Continuous outcomes**:
- `pm.Normal('y', mu=mu, sigma=sigma)` - Default for continuous data
- `pm.StudentT('y', nu=nu, mu=mu, sigma=sigma)` - Robust to outliers
**Count data**:
- `pm.Poisson('y', mu=lambda)` - Equidispersed counts
- `pm.NegativeBinomial('y', mu=mu, alpha=alpha)` - Overdispersed counts
- `pm.ZeroInflatedPoisson('y', psi=psi, mu=mu)` - Excess zeros
**Binary outcomes**:
- `pm.Bernoulli('y', p=p)` or `pm.Bernoulli('y', logit_p=logit_p)`
**Categorical outcomes**:
- `pm.Categorical('y', p=probs)`
**See:** `references/distributions.md` for comprehensive distribution reference
## Sampling and Inference
### MCMC with NUTS
Default and recommended for most models:
```python
idata = pm.sample(
draws=2000,
tune=1000,
chains=4,
target_accept=0.9,
random_seed=42
)
```
**Adjust when needed:**
- Divergences → `target_accept=0.95` or higher
- Slow sampling → Use ADVI for initialization
- Discrete parameters → Use `pm.Metropolis()` for discrete vars
### Variational Inference
Fast approximation for exploration or initialization:
```python
with model:
approx = pm.fit(n=20000, method='advi')
# Use for initialization
start = approx.sample(return_inferencedata=False)[0]
idata = pm.sample(start=start)
```
**Trade-offs:**
- Much faster than MCMC
- Approximate (may underestimate uncertainty)
- Good for large models or quick exploration
**See:** `references/sampling_inference.md` for detailed sampling guide
## Diagnostic Scripts
### Comprehensive Diagnostics
```python
from scripts.model_diagnostics import create_diagnostic_report
create_diagnostic_report(
idata,
var_names=['alpha', 'beta', 'sigma'],
output_dir='diagnostics/'
)
```
Creates:
- Trace plots
- Rank plots (mixing check)
- Autocorrelation plots
- Energy plots
- ESS evolution
- Summary statistics CSV
### Quick Diagnostic Check
```python
from scripts.model_diagnostics import check_diagnostics
results = check_diagnostics(idata)
```
Checks R-hat, ESS, divergences, and tree depth.
## Common Issues and Solutions
### Divergences
**Symptom:** `idata.sample_stats.diverging.sum() > 0`
**Solutions:**
1. Increase `target_accept=0.95` or `0.99`
2. Use non-centered parameterization (hierarchical models)
3. Add stronger priors to constrain parameters
4. Check for model misspecification
### Low Effective Sample Size
**Symptom:** `ESS < 400`
**Solutions:**
1. Sample more draws: `draws=5000`
2. Reparameterize to reduce posterior correlation
3. Use QR decomposition for regression with correlated predictors
### High R-hat
**Symptom:** `R-hat > 1.01`
**Solutions:**
1. Run longer chains: `tune=2000, draws=5000`
2. Check for multimodality
3. Improve initialization with ADVI
### Slow Sampling
**Solutions:**
1. Use ADVI initialization
2. Reduce model complexity
3. Increase parallelization: `cores=8, chains=8`
4. Use variational inference if appropriate
## Best Practices
### Model Building
1. **Always standardize predictors** for better sampling
2. **Use weakly informative priors** (not flat)
3. **Use named dimensions** (`dims`) for clarity
4. **Non-centered parameterization** for hierarchical models
5. **Check prior predictive** before fitting
### Sampling
1. **Run multiple chains** (at least 4) for convergence
2. **Use `target_accept=0.9`** as baseline (higher if needed)
3. **Include `log_likelihood=True`** for model comparison
4. **Set random seed** for reproducibility
### Validation
1. **Check diagnostics** before interpretation (R-hat, ESS, divergences)
2. **Posterior predictive check** for model validation
3. **Compare multiple models** when appropriate
4. **Report uncertainty** (HDI intervals, not just point estimates)
### Workflow
1. Start simple, add complexity gradually
2. Prior predictive check → Fit → Diagnostics → Posterior predictive check
3. Iterate on model specification based on checks
4. Document assumptions and prior choices
## Resources
This skill includes:
### References (`references/`)
- **`distributions.md`**: Comprehensive catalog of PyMC distributions organized by category (continuous, discrete, multivariate, mixture, time series). Use when selecting priors or likelihoods.
- **`sampling_inference.md`**: Detailed guide to sampling algorithms (NUTS, Metropolis, SMC), variational inference (ADVI, SVGD), and handling sampling issues. Use when encountering convergence problems or choosing inference methods.
- **`workflows.md`**: Complete workflow examples and code patterns for common model types, data preparation, prior selection, and model validation. Use as a cookbook for standard Bayesian analyses.
### Scripts (`scripts/`)
- **`model_diagnostics.py`**: Automated diagnostic checking and report generation. Functions: `check_diagnostics()` for quick checks, `create_diagnostic_report()` for comprehensive analysis with plots.
- **`model_comparison.py`**: Model comparison utilities using LOO/WAIC. Functions: `compare_models()`, `check_loo_reliability()`, `model_averaging()`.
### Templates (`assets/`)
- **`linear_regression_template.py`**: Complete template for Bayesian linear regression with full workflow (data prep, prior checks, fitting, diagnostics, predictions).
- **`hierarchical_model_template.py`**: Complete template for hierarchical/multilevel models with non-centered parameterization and group-level analysis.
## Quick Reference
### Model Building
```python
with pm.Model(coords={'var': names}) as model:
# Priors
param = pm.Normal('param', mu=0, sigma=1, dims='var')
# Likelihood
y = pm.Normal('y', mu=..., sigma=..., observed=data)
```
### Sampling
```python
idata = pm.sample(draws=2000, tune=1000, chains=4, target_accept=0.9)
```
### Diagnostics
```python
from scripts.model_diagnostics import check_diagnostics
check_diagnostics(idata)
```
### Model Comparison
```python
from scripts.model_comparison import compare_models
compare_models({'m1': idata1, 'm2': idata2}, ic='loo')
```
### Predictions
```python
with model:
pm.set_data({'X': X_new})
pred = pm.sample_posterior_predictive(idata.posterior)
```
## Additional Notes
- PyMC integrates with ArviZ for visualization and diagnostics
- Use `pm.model_to_graphviz(model)` to visualize model structure
- Save results with `idata.to_netcdf('results.nc')`
- Load with `az.from_netcdf('results.nc')`
- For very large models, consider minibatch ADVI or data subsampling